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Abstract

We develop a Constrained Extremely Zero Inflated Joint (CEZIJ) modeling frame-
work for simultaneously analyzing player activity, engagement and drop-outs (churns)
in app-based mobile freemium games. Our proposed framework addresses the com-
plex interdependencies between a player’s decision to use a freemium product, the
extent of her direct and indirect engagement with the product and her decision to
permanently drop its usage. CEZIJ extends the existing class of joint models for
longitudinal and survival data in several ways. It not only accommodates extremely
zero-inflated responses in a joint model setting but also incorporates domain-specific,
convex structural constraints on the model parameters. Longitudinal data from app-
based mobile games usually exhibit a large set of potential predictors and choosing the
relevant set of predictors is highly desirable for various purposes including improved
predictability. To achieve this goal, CEZIJ conducts simultaneous, coordinated se-
lection of fixed and random effects in high-dimensional penalized generalized linear
mixed models. For analyzing such large-scale datasets, variable selection and estima-
tion is conducted via a distributed computing based split-and-conquer approach that
massively increases scalability and provides better predictive performance over com-
peting predictive methods. Our results reveal co-dependencies between varied player
characteristics that promote player activity and engagement. Furthermore, the pre-
dicted churn probabilities exhibit idiosyncratic clusters of player profiles over time
based on which marketers and game managers can segment the playing population
for improved monetization of app-based freemium games.
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1 Introduction

Mobile games have become an integral part of modern life (Koetsier, 2015). While their

almost ubiquitous presence is increasingly reshaping the recreational, socialization, edu-

cational and learning media (Statista (2018), see Ch 1 and 3 of Hwong (2016), Garg and

Telang (2012)), the monetization policies associated with these new mobile apps is rapidly

revolutionizing the digital marketing and advertisement space in information systems (Ap-

pel et al., 2017, Liu et al., 2014). As such mobile games (as per industry standards formally

defined as any app-based game played on an Internet enabled mobile device such as tablets,

phones, etc) currently comprise 42% of the market share of global gaming products (Mc-

Donald, 2017) and more than eight hundred thousand mobile games were available for

download in the iOS App Store alone, with approximately four hundred new submissions

arriving each day (PocketGamer, 2018). To understand how quickly the gaming market

is growing, a new industry study from Spil Games (Diele, 2013) reports that 1.2 billion

people are now playing games worldwide, with 700 million of those online. The unprece-

dented growth and popularity of mobile games has resulted in a market with some very

unique consumer characteristics (Boudreau et al., 2017). It is an extremely crowded market

with significant proportion of revenue accumulated through advertisement based on free

products (Appel et al., 2017). Specifically, app retention rates are much lower than the

observed retention rates in classical products and services, with reports suggesting that

more than 80% of all app users churn (drop out) within the first quarter (Perro, 2016, Mar-

ketingCharts, 2017). The freemium business model (Niculescu and Wu, 2011), which offers

a certain level of service without cost and sells premium add-on components to generate

revenue, is a popular strategy for monetization of these mobile games. As such, industry

reports indicate that more than 90% of the mobile games start as free, and more than 90%

of the profits currently come from products that began as free (AppBrain, 2017, Taube,

2013). User characteristics in freemium models differ in fundamental aspects from tra-

ditional marketing models. This necessitates development of new analytical methods for

modeling freemium behavior.
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1.1 Freemium model: Player Activity and Engagement

In the freemium market, firms initially attract customers with free usage of their products,

with the expectation that free usage will lead customers to engage in future purchase of

premium components. However, customers can always remain free users and never need

to enjoy the premium components of the product. This is an important distinction with

non-freemium business models, where customers must purchase in order to use the product.

While the free to use part of freemium products helps to attract the consumer base quickly

(Kumar, 2014), managers are uncertain on whether and how freemium can generate profits

(Needleman and Loten, 2012) as majority of the consumers do not use the premium part

of freemium. As such, unless a game is very popular, in-app purchases contribute an

insignificant proportion of its revenue. Mobile marketing automation firm Swrve (Swrve,

2016) found that over 48% of all in-game revenue are derived from 0.19% of all players,

which is a tiny segment. While in-game (direct) revenue is important, there are several

indirect ways of monetizing the free users by involving them to engage with the game via

social media (through facebook or twitter likes and posts of game achievements, inviting

social media friends to join game, watching, liking or posting youtube videos related to

the game) or the app center. To measure the daily engagement of a player, we judiciously

combine her in-app purchases (direct source of revenue) with her varied involvements with

the game in media (indirect source of monetization), under the notion that purchase is the

highest form of engagement. We define a player’s daily activity as the time she spends playing

the game in the day. Positive daily activity does not always lead to positive engagement. It

is commonly believed that as a game grows with increasing and prolonged player activities,

it will have more positive as well as higher engagement values.

For game managers it is extremely important to accurately measure player activity,

engagement and their co-dependencies. Also, varied retention strategies are often used to

curb high churn rates and their effects need to be properly analyzed. Here, we develop a

Constrained Extremely Zero Inflated Joint (CEZIJ) modeling framework that provides a

disciplined statistical program for jointly modeling player activity, engagement and churn in

online gaming platforms. Our proposed framework captures the co-dependencies between
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usage (activity), direct and indirect revenue (engagement), and dropouts (which is a time-

to-event) and provides a systematic understanding of how the dependent variables influence

each other and are influenced by the covariates. Furthermore, the CEZIJ framework can

be used to predict the activity, engagement and attrition of new players. The ability to

forecast behavior of new players is critical for managers, as this enables them to better

predict the effectiveness of their gaming platform in engaging customers and thus attract

future advertisers to their platform.

1.2 Joint modeling of player characteristics

Our joint modeling framework uses generalized linear mixed effect models (GLMM) and

relies on a joint system of equations that model the relationships between activity, engage-

ment, and churn. In the activity equations, we separately assess whether consumers are

active (i.e. play the game) and the extent of their activity through the amount of time

they spend playing the game. Engagement is modeled by the probability of having pos-

itive engagement and by a conditional model on the positive engagement values. In the

churn equations, we account for permanent churn identified as those players who are not

active for more than 30 consecutive days. Our modeling systems addresses the complex

interdependencies between (1) the decision to use the free product, (2) how much time will

be spent using the free product, (3) the decision to engage, (4) the extent of engagement

and (5) the decision to churn. That is, the joint equation system comprehensively un-

covers positive, negative, or zero co-dependencies among activity, engagement, and churn

in freemium markets. In recent times, joint modeling of multiple outcomes have received

considerable attention (Rizopoulos, 2012). Many applications consider the modeling of

single or multiple longitudinal outcomes and a time-to-event outcome (e.g., Jiang (2007),

McCulloch (2008), Rizopoulos et al. (2009, 2010), Banerjee et al. (2014), Rizopoulos and

Lesaffre (2014)). Our motivation for jointly modeling the drivers of player gaming traits

and dropout arises from the fact that there is heterogeneity across player’s outcomes and

one must combine these effects by correlating the multiple responses. Since these responses

are measured on a variety of different scales (viz. time spend in hours, revenue in dollars),
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a flexible solution is to model the association between different responses by correlating the

random heterogeneous effects from each of the responses. Such a model not only gives us

a covariance structure to assess the strength of association between the responses, but also

offers useful insights to managers, since despite huge popularity of mobile games among

users, managers are not certain whether freemium is profitable. Furthermore, it is impor-

tant for managers to understand how activity and engagement are related to player churn.

While customers who frequently use the free product could be more satisfied, thus reducing

their probability of churn (Gustafsson et al., 2005), free usage could be related to a greater

probability of churn as there is little switching cost for customers due to their lower per-

ceived value (Yang and Peterson, 2004). Earlier studies used simpler models for churn that

are independent of the purchase rate (Jerath et al., 2011). Here we model churn allowing

for possible co-dependencies with activity and engagement.

1.3 Statistical challenges

The online gaming data, which is the application case described in detail in section 2, and

the particular business model of freemium, pose several statistical challenges and necessi-

tates novel extensions of the joint modeling framework. We describe the details below.

(i) Extreme Zero-inflation - Freemium behavior suggests that even if a player is active

on a day, it very rarely leads to purchases or social media engagement on her part. Thus,

though both activity and engagement are zero-inflated, engagement has an extremely zero-

inflated distribution. Mixture distributions of which zero-inflated distributions are a special

case are commonly used in this kind of data. While there are multiple models that have

been developed to accommodate data with excess zeros; see for example, Olsen and Schafer

(2001), Min and Agresti (2005), Han and Kronmal (2006), Alfò et al. (2011), Greene (2009)

and the references therein, there is not much attention on extreme zero-inflated data. Few

recent works, e.g., Hatfield et al. (2012) show promise though. We develop a joint modeling

framework that can accommodate extreme zero-inflation. The proposed framework allows

us to accommodate large incidences of no-engagement by active players, such as that ob-

served in freemium markets and helps managers more accurately forecast sales potential
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for businesses with large active customer bases but small incidence of engagement by sepa-

rating the confound between non-active and non-engaged. We highlight that this extreme

zero inflated data is not only relevant to freemium markets but is also common in other

businesses wherein a sizable portion of the active consumer base engages in very little pur-

chase activity. For example, in the online setting, we may observe low incidences of online

ratings (i.e. 1-5 star rating), user generated content creation, banner ad click-through, and

search ad conversion (see for example Urban et al. (2013), Haans et al. (2013)). Likewise

in the offline setting of purchase data for example, most product categories comprise less

than 5% planned or actual purchase for an individual’s visit to the grocery store (Hui

et al., 2013). Thus, if managers are interested in assessing promotion on sales or individual

level purchase activity in these contexts, we may be confronted with data that contains an

extreme number of zeros.

(ii) Parametric Constraints - We develop a framework for incorporating domain specific

structural constraints in our model for one may have prior knowledge that a vector of

parameters lies on a simplex or follows a particular set of inequality constraints. It is quite

common in gaming data to have prior information available on various activities of the

player. For example, it is well-known that player characteristics will have a burgeoning

weekend effect or marketers have prior knowledge on the comparative efficacies of the

retention strategies particularly if they have known dosage demarcations. Using these side

information is extremely important (James et al., 2013, Banerjee et al., 2018) and the

CEZIJ framework incorporates these domain expertise though convexity constraints in our

model.

(iii) Hierarchical Variable Selection - In online gaming data one usually encounters nu-

merous covariates related to both game specific and player specific variables and choosing

the relevant set of covariates is highly desirable for improving predictability. It is also im-

portant that the inferential problems associated with these data properly account for the

presence of a lot of possibly spurious covariates. The high-dimensionality of these datasets,

however, renders classical variable selection techniques incompetent. We develop a novel

algorithm for estimation in the CEZIJ framework that conducts variable selection from a
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large set of potential predictors in GLMM based joint model. To produce interpretable

effects CEZIJ imposes a hierarchical structure on the selection mechanism and includes

covariates either as fixed effects or composite effects where the latter are those covariates

that have both fixed and random effects (Hui et al., 2017a)(See Section 4 for details). Ef-

ficient selection of fixed and random effect components in a mixed model framework has

received considerable attention in recent years (Bondell et al. (2010), Fan and Li (2012),

Lin et al. (2013); detailed background is provided in Section 4). Penalized quasi likeli-

hood (PQL) approach has been used by Hui et al. (2017b) to conduct simultaneous (but

non-hierarchical) selection of mixed effects in a GLMM framework with adaptive lasso and

adaptive group lasso regularization. The CREPE (Composite Random Effects PEnalty)

estimator of Hui et al. (2017a) conducts hierarchical variable selection in a GLMM with a

single longitudinal outcome and employs a monte carlo EM (MCEM) algorithm of Wei and

Tanner (1990) to maximize the likelihood. The CREPE estimator ensures that variables

are included in the final model either as fixed effects only or as composite effects. Our

proposed CEZIJ framework is related to Hui et al. (2017a) in its ability to conduct hierar-

chical variable selection in GLMMs. However, unlike Hui et al. (2017a), CEZIJ performs

hierarchical variable selection in a joint model of multiple correlated longitudinal outcomes.

Additionally, it can also incorporate any convexity constraint on the fixed effects.

(iv) Scalability - For any mobile game app, gargantuan volumes of user activity data

are automatically accumulated. Analyzing such big datasets not only involves inferential

problems associated with high-dimensional data analysis but also the computational chal-

lenges of processing large-scale (sample) longitudinal data. To process large longitudinal

data-sets, CEZIJ leverages the benefits of distributed computing. Recently, algorithmic

developments for increased scalability and reduced computational time without sacrificing

the requisite level of statistical accuracy have received significant attention. See for example

Jordan et al. (2013), Jordan et al. (2018), Lee et al. (2015) and the references therein. A

popular approach is to conduct inference independently and simultaneously on K subsets

of the full dataset and then form a global estimator by combining the inferential results

from the K nodes in a computation-efficient manner. We take a similar approach for the
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hierarchical selection of fixed and random effects by using the split-and-conquer approach

of Chen and Xie (2014) that splits the original dataset into K non-overlapping groups,

conducts variable selection separately in each group and uses a majority voting scheme in

assimilating the results from the splits.

(v) Prediction and Segmentation - Predictive analysis of new player behavior is funda-

mental for the maintenance of existing as well as for the creation of new advertisement

based monetization routes in these gaming platforms. Statistically, this necessitates con-

struction of prognostic models that can not only forecast new user activity, engagement and

drop-out behavior but also dynamically update such forecasts over time as new longitudinal

information about them arrives. Based on our fitted joint model, we construct drop-out

probability profiles (over time) for an out-of-sample generic player population and use them

for segmentation of idiosyncratic player behaviors. Segmentation is a key analytical tool

for managers. Users in different segments respond differently to varied marketing promo-

tions. This enables managers to use relevant marketing promotions that better match user

responses in different segments and increase efficiency of their marketing campaign.

We develop our joint modeling framework which accommodates all of the above men-

tioned extensions through an efficient and scalable estimation procedure. To the best of

our knowledge, we are the first to study constrained joint modeling of high-dimensional

data. Though we demonstrate the applicability of the CEZIJ inferential framework for the

disciplined study of freemium behavior, it can be used in a wide range of other applica-

tions that needs analyzing multiple high-dimensional longitudinal outcomes along with a

time-to-event analysis. To summarize, the key features of our CEZIJ framework are:

• Joint modeling of the highly related responses pertaining to daily player activity and

engagement as well as the daily dropout probabilities using the freemium mobile game

data described in Section 2;

• The possibility of acute zero-inflation in the player engagement distribution is ad-

dressed by modeling the conditional probability of no engagement given that the

player had used the app in the day (see Figure 3);

• Convexity constraints pertinent to domain expertise and prior beliefs are incorporated

8



in the modeling framework in Section 3;

• A penalized EM algorithm (Wei and Tanner, 1990) is used for simultaneous selection

of fixed and random effects wherein data-driven weighted `1 penalties are imposed

on the fixed effects as well as on the diagonal entries of the covariance matrix of the

random effects while the common regularization parameter λ is chosen by a BIC-type

criterion (see equation (9));

• Hierarchical selection of the fixed and random effects is conducted in Section 4 by

using a re-weighted `1 minimization algorithm that alternates between estimating the

parameters and redefining the data-driven weights such that the weights used in any

iteration are computed from the solutions of the previous iteration;

• The divide and conquer approach in Section 5 distributes the problem into tractable

parallel sub-groups resulting in increased scalability;

• Prediction of the drop-out probabilities as well as the activity and engagement charac-

teristics of new players with the predictions being dynamically updated as additional

longitudinal information is recorded (see Section 6). Based on these dynamic churn

probability curves from our fitted joint model, we conduct segmentations of player

profiles that can be used by game managers to develop improved promotion and

retention policies specifically targeting different dominant player-types.

2 Motivating data: Activity, Engagement, Churn and

Promotion Effects in Freemium Mobile Games

We consider daily player level gaming information for a mobile app game where users use

robot avatars to fight other robots till one is destroyed. There were 38,860 players in

our database and we tracked daily player level activity and purchases for 60 consecutive

days starting from the release date of the game. We use a part of the data (players) for

estimation and the other part as the hold out set for prediction (See details in Section 6).
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There were three modes of the game and level progression can only be attained through

the principal mode. However, the players get rewards (henceforth called in-game rewards)

if they win games in all three modes. For the two non-principal modes, collecting rewards

is the main objective. The players can use these rewards for improving their fighting

equipments through upgrades of their existing inventories or in getting access to powerful

new robots or for acquiring fancy game themes and background changes. The player can

also buy these facilities (add-ons) using real money through direct in-app purchases (IAP).

There were only 0.28% of the players who used real money for buying add-ons. The players

are given premium rewards, which has much higher order of magnitudes than regular

rewards, if they promote the game or the developers through social media (inviting friends

on facebook for games, facebook likes, youtube likes, tweets) or through the app center or

by downloading other related apps from the developer. Approximately 7.2% of the players

in our data had premium rewards. We record daily engagement of a player by appropriately

combining her real money purchases (direct source of revenue) with her varied involvement

in promoting the game in media (indirect source of monetization) with the notion being

that the highest form of engagement is the one leading to purchases. Daily engagement is

an extremely zero-inflated variable. We assess player behavior in terms of her daily total

playing time (activity), engagement value and drop out probability. We say that a player

has dropped out if she has not logged-in for a month consecutively. For each player we

have a host of time-dependent covariates generated through the game-play which we model

as composite effects. They include current level of the game, number of games played

daily in the three different modes of the game, how are the in-game rewards spent, etc

(See table 3 and summary table 4 in section D of the supplementary material for details).

From a gaming perspective, it is very interesting to study the effects on gaming time of the

amount of in-game rewards that the players spend on either upgrading existing robots or

purchasing new robots. Another interesting feature of the game, was the usage of “gacha”

mechanism (Toto, 2012) which allowed the players to gamble in-game currency through

lottery draws. The “gacha” is a very popular feature in freemium games (Kanerva, 2016).

We use the currency employed by players in “gacha” as well as their gains, as covariates in
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Figure 1: Game play flowchart

modeling engagement. Also, several promotional and retention strategies were used by the

developers, which encourage player activity. Figure 1 contains a flowchart summarizing the

key components of the game. The promotions intrinsically were of four different flavors: (a)

award more reward percentages and battery life (b) sale on robots (c) thanksgiving holiday

promotions (d) email and app-message based notifications for retention. Also, there were

three different kinds of sales on robots. Thus, there were six different promotional strategies,

with only one of them (if at all) being employed on a single day (See table 4 and figure 3

in section D of the supplementary material). In figures 2a and 2b, we present the activity,

engagement and churn profiles of the players in our data. Interestingly, the proportion

of players with positive engagement is below 10% from day 3 onwards and drops to less

than 1% after the first 21 days. Figures 2c and 2d respectively show the 25th, 50th and 75th

percentiles of the distribution of Total Time Played and the average engagement amount on

each of the 60 days. Note that from day 20 onwards the distribution of average engagement

shows increased variability. This is not unexpected given the observation from figure 2a

which shows that the proportion of players with positive engagement falls steadily. Also,

note that the heavy tailed nature of the distributions of positive time played and positive

engagement amount is evident from figure 2 (section D of the supplementary material)
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(a) (b)

(c) (d)

Figure 2: (a) Proportion of players active and proportion of players with positive engagement over 60

days. (b) Proportion of player churn from day 31 to day 60. (c) Median activity sandwiched between its

25th and 75th percentile. (d) Mean engagement amount and the total engagement amount over the 60

days.
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which plots the empirical CDF of the two variables. So, in the following section we use

Log-normal distributions to model the non-zero activity and engagement values. Further

details regarding the data are available in section D of the supplementary material.

3 CEZIJ Modeling Framework

Using the aforementioned motivation example, we now introduce our generic joint modeling

framework. Consider data from n independent players where every player i = 1, . . . , n

is observed over m time points. Let Aij and Eij denote, respectively, the activity and

engagement of player i at day j with Ai = (Ai1, . . . ,Aim) and Ei = (Ei1, . . . ,Eim) denoting

the corresponding vector of longitudinal measurements taken on player i. Let Di denote

the time of dropout for player i and Ci the censoring time. We assume Cis are independent

of Dis. Thus Ci = m if player i never drops out. The observed time of dropout is

D∗i = min(Di,Ci), and the longitudinal measurements on any player i are available only

over mi ≤ D∗i time points. Suppose αij be the indicator of the event that player i is active

(Aij > 0) on day j and εij be the indicator that she positively engages (Eij > 0) on day j.

Let πij = Pr(αij = 1), qij = Pr(εij = 1|αij = 1), αi = (αi1, . . . , αim) and εi = (εi1, . . . , εim).

Note that, αij = 0 implies Aij = Eij = 0 and also εij = 0. In these gaming apps, it is usually

witnessed that any player’s usage of the app always produces positive activity (however

small). Thus, αij here corresponds to a player’s daily activity indicator (AI). It forms the

base (first level) of our joint model. The πij corresponds to daily usage probability where-as

qij corresponds to the conditional probability of positive player engagement given that the

player has used the app in the day. In Figure 3, we provide a schematic diagram of our joint

model where we use two binary random variables: Activity Indicator (AI) and Engagement

Indicator (EI) to be respectively denoted αij and εij. We jointly model the five components

[αi,Ai, εi,Ei,Di] := [Y
(s)
i : s ∈ {1, 2, 3, 4, 5}] given the observations. Let I be the full set of

p predictors in the data with If ⊂ I as the set of fixed effects (time invariant or not) and

Ic = I \ If as the set of composite effect predictors, which are modeled by combination

of fixed and random effects. Let pf = |If | and pc = |Ic| and so, pc + pf = p. For each of

the first four sub-models, s = 1, . . . , 4, we consider p fixed effects β(s) (pf of those are from
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the time invariant and the rest from the composite components) and pc random effects b(s)

while for the dropout model, s = 5, we consider p new fixed effects β(5) but share the

random effects from the four sub-models and calibrate their effects on dropouts through

an association parameter vector η. See section 3.1 for further details.

Let x
(s)
ijk denote the observed kth covariate value for the ith player on the jth day. Let

x
(s)
ij = {x(s)ijk | k ∈ I} and z

(s)
ij = {z(s)ijk | k ∈ Ic} denote the set of covariate values pertaining

to the in-model fixed and random effects; X(s) and Z(s) respectively denote the data for these

effects across all n players and β = {β(s) : s ∈ {1, 2, 3, 4}} and b = {b(s) : s ∈ {1, 2, 3, 4}}

be all the fixed and random effects across all players. To join the four models, we take

a correlated random effects approach and assume that the random effects governing the

four sub-models have a multivariate Gaussian distribution. For player i, represent all her

random effects by bi = (b
(s)
i : 1 ≤ s ≤ 4). We assume that {bi : 1 ≤ i ≤ n} i.i.d. N(0,Σ)

where Σ is the 4pc × 4pc unknown covariance matrix. To model the dropouts, we again

consider p new fixed effects β(5) but share the random effects from the four sub-models and

calibrate their effects on dropouts through an association parameter vector η. We model[
Y(s) : 1 ≤ s ≤ 5|X,Z,β,Σ

]
as

n∏
i=1

[
bi
] [
αi |X(1)

i ,β(1),Z
(1)
i , b

(1)
i

] [
Ai |αi,X(2)

i ,β(2),Z
(2)
i , b

(2)
i

] [
εi |αi,X(3)

i ,β(3),Z
(3)
i , b

(3)
i

]
[
Ei |αi, εi,X(4)

i ,β(4),Z
(4)
i , b

(4)
i

] [
Di |X(5)

i ,β(5), bi
]
.

Note that the dimension of each b
(s)
i in bi is pc and that of x

(s)
ij is p. In the context of

our mobile app game data, pc = 25 and so Σ is 100 × 100 and p = 31 for each of the five

sub-models, thus making a set of 155 fixed effects (time invariant or not). See section 6 for

more details.

Remark 1 If we have data pertaining to social media interactions among players, it would

be beneficial to include network or group effects among players. In the absence of such

network information, we model b
(s)
i as i.i.d. across players.
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3.1 Longitudinal sub-models and model for Dropouts

Zero inflated Log-normal for modeling Activity - Since player i is active only at some

time points j, the observed activity Ai has a mix of many zeros and positive observations.

In equation (1), we consider a zero inflated (ZI) Log Normal model for Aij to capture both

the prevalence of these excess zeros and possible large values observed in the support of

Aij. Thus, the model for activity Aij has a mixture distribution with pdf

g1(αij,Aij | b(1)i , b
(2)
i ) = (1−πij) I{αij = 0}+πij(σ1Aij)

−1φ

(
logAij − µij

σ1

)
I{αij = 1} (1)

where

logit(πij) = x
(1)T
ij β(1) + z

(1)T
ij b

(1)
i → Binary part (2)

and µij = x
(2)T
ij β(2) + z

(2)T
ij b

(2)
i → Positive activity part (3)

The activity indicator αij is modeled using a logistic regression model with random effects

in equation (2). In equation (3) we use an identity link to connect the expected log activity

with the covariates and the random effects. For convenience, hereon the dependence on the

fixed effects and covariates are kept implicit in the notations and only the involved random

effects are explicitly demonstrated.

Extreme ZI Log-normal for modeling Engagement - Note that, Ei also has a mix

of zeros and positive observations but the extreme zero events in the engagement variable

are due to : (a) players are inactive on days and, (b) active players on a day may not

exhibit engagement on the same day. To account for this excess prevalence of zeros, we use

an Extreme Zero Inflated (EZI) Log Normal model that models (αij, εij,Eij, ) as a flexible

mixture distribution with joint pdf

g2(αij, εij,Eij | b(1)i , b
(3)
i , b

(4)
i ) = (1− πij)I{αij = 0}+ πijg3(εij,Eij | b(3)i , b

(4)
i )I{αij = 1} (4)

where, g3(εij,Eij | b(3)i , b
(4)
i ) = (1− qij)I{εij = 0}+ (5)

qij(σ2Eij)
−1φ

(
logEij − γij

σ2

)
I{εij = 1}

logit(qij) = x
(3)T
ij β(3) + z

(3)T
ij b

(3)
i → Binary part (6)

γij = x
(4)T
ij β(4) + z

(4)T
ij b

(4)
i → Positive engagement part (7)
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Note that a player can potentially engage (Eij ≥ 0) only if she is active (αij = 1) on

that day. Thus, g3(εij,Eij | b(3)i , b
(4)
i ) in equation (4) represents the joint pdf of (εij,Eij)

conditional on the event that the player is active, i.e., αij = 1. However, even if the player

is active, distribution of engagement again can have a mixture distribution, as the particular

player may or may not exhibit positive engagement (Eij > 0). Thus, conditional on the

player being active, we further model (εij,Eij) using another zero-inflated Log Normal

model as shown in equation (5). By combining equations (4) and (5), intuitively, we

use the EZI model to split the players into two groups: (1) who are not active and (2)

who are active. Then conditional on being active, we further split the latter group of

players into two additional segments: (1) who do not engage (εij = 0) and, (2) who engage

(εij = 1) and thus demonstrate positive engagement (Eij > 0). Finally, we complete the

specification of the EZI Log Normal model by connecting the binary response εij|αij = 1

with the covariates and the random effects through a logit link in equation (6) and use an

identity link for expected log engagement γij in equation (7). Note that even though we

model αij in equations (1) and (4) using g1 and g2, respectively, there is no discordance as

g1(αij) = g2(αij) for all (i, j).

Model for dropouts - For the discrete time hazard of dropout, we model λij := P (Di =

j|Di ≥ j, bi) as

logit(λij) = x
(5)T
ij β(5) + ηTbi , (8)

and the pmf of D∗i is

g4(D
∗
i = d | bi) =

{d−1∏
j=1

(1− λij)
}
λ
δDi
id (1− λid)1−δ

D

i

where δDi = I(Di ≤ Ci) is the indicator of dropout occurrence. Here η is a parameter

vector that relates the longitudinal outcomes and the dropout time via the random effects

bi. This approach to modeling the dropouts through equation (8) is analogous to the shared

parameter models in clinical trials that are used to account for potential Not Missing At

Random (NMAR) responses. (see Vonesh et al. (2006), Guo and Carlin (2004) for example).

If η = 0 then the dropout is ignorable given the observed data. Figure 3 contains a

schematic diagram of our joint model.
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Figure 3: Schematic diagram of our joint model for player i. The suffix denoting the day number is

dropped for presentational ease.

Correlating the random effects and Linking the sub-models - All the sub-models

described above carry information about the playing behavior of individuals and are there-

fore inter-related. To get the complete picture and to account for the heterogeneity across

individual’s outcomes, one must combine these effects by correlating the multiple out-

comes. Without inter-relating or jointly considering these outcomes, it is not only hard

to answer questions about how the evolution of one response (e.g., activity) is related to

the evolution of another (e.g., engagement) or who is likely to dropout, but also problem-

atic to model the heterogeneity. In such cases, it is natural to consider models where the

dependency among the responses may be incorporated via the presence of one or more

latent variables. A flexible solution is to model the association between different responses

by correlating the random heterogeneous effects from each of the responses. In our joint
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modeling approach, random effects are assumed for each longitudinal response and they

are associated by imposing a joint multivariate distribution on the random effects, i.e,

bi = (b
(s)
i : 1 ≤ s ≤ 4) ∼ N(0,Σ). Such a model borrows information across the var-

ious touch points and offers an intuitive way of describing the dependency between the

responses. For example, questions such as, “is engagement related to activity for an indi-

vidual?”, or “does higher activity increase the probability of engagement” can be answered

using the estimated covariance structure of Σ. Furthermore, we assume that the depen-

dency between the longitudinal outcomes and the risk of dropout are described by the

random effects bi and the covariates. In our context this is reasonable since, for instance,

the longitudinal outcome AI may characterize player engagement, and player engagement

can in turn influence the risk of dropout.

3.2 Parametric Constraints

The CEZIJ framework can incorporate any convexity constraints on the fixed effects:

f(s)(β(s)) ≤ 0, s = 1, · · · , 5, where f is any pre-specified convex function. In the mobile

game platform modeling application, domain expertise can be incorporated into our frame-

work via these constraints. For example, industry belief dictates that all other factors

remaining fixed, players have higher chance of being active in the game on weekends than

on week days. Thus a sign constraint on the unknown fixed effect coefficient for the variable

(β
(s)
weekend > 0) that indicates whether day j is a weekend, is a simple yet effective way to

include this additional information into our estimation framework. Also, different promo-

tional and retention strategies used in these games are incorporated in the model as fixed

effects through the binary variables demarcating the days they were applied (see figure

3 in section D of the supplementary material for a distribution of the various promotion

strategies across the m = 60 days). These strategies often have previously known efficacy

levels which imply monotonicity constraints on their effects. For example, email and app

messaging based retention scheme should have at least a non-negative increment effect on

the daily usage probabilities πijs; the engagement effect of a promotion that offers sale on

only selected robots can not exceed the increment effect of sale on all robots. As such,

18



Table 1: Parameter constraints and their interpretation. Here β
(s)
prom(i) indicates the fixed effect

coefficient for promotion i = I, . . . , V I under model s = 1, . . . , 5.

Constraint Description

β
(s)
weekend ≥ 0, ∀ s Expect increased player activity on weekends

β
(s)
timesince ≤ 0, ∀ s Expect lower player activity as time since last login increases

β
(1)
promV, β

(1)
promIV ≥ 0 Expect promotions IV, V to increase player activity

β
(1)
promV ≥ β

(1)
promIV Expect promotion V to have a higher positive impact on player activity than promotion IV

β
(2)
prom(i) ≥ 0 for i 6= IV All promotions other than IV to have a non-negative impact on activity.

β
(2)
promIII ≥ β

(2)
promV Promotions III leads to a higher increase in activity than promotion V

β
(2)
promVI ≥ β

(2)
promII ≥ β

(2)
promV Promotions VI has the largest positive impact on activity followed by promotions II and V

β
(2)
promV ≥ β

(2)
promIV Promotion V leads to a higher increase in activity than promotion IV

in our mobile game application, we assimilate these side information through structured

affine constraints: C(s)β(s) ≤ κ(s), s = 1, · · · , 5 where C(s) and κ(s) are known. Details

about these constraints are provided in tables 1 and 5 (in section D of the supplementary

material), where we describe the six promotion strategies and the constraints that have

been included in our estimation framework along with their business interpretation.

4 Variable selection in CEZIJ

In the absence of any prior knowledge regarding variables that may appear in the true

model, we conduct automated variable selection. Selection of fixed and random effect

components in a mixed model framework has received considerable attention. Under the

special case of a linear mixed effect model, Bondell et al. (2010) and Ibrahim et al. (2011)

proposed penalized likelihood procedures to simultaneously select fixed and random effect

components, while Fan and Li (2012), Peng and Lu (2012) and Lin et al. (2013) conduct

selection of fixed and random effects using a two stage approach. Procedures to select only

the fixed effects or the random effects have also been proposed under a GLMM framework;

see Pan and Huang (2014) and the references therein. Simultaneous selection of fixed and

random effect components in a GLMM framework is, however, computationally challenging.
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The high dimensional integral with respect to the random effects in the marginal likelihood

of GLMM often has no analytical form and several approaches have been proposed to tackle

this computational hurdle: for example Laplacian approximations (Tierney and Kadane,

1986), adaptive quadrature approximations (Rabe-Hesketh et al., 2002), penalized quasi

likelihood (PQL)(Breslow and Clayton, 1993) and EM algorithm (McCulloch, 1997). We

use a penalized EM algorithm and for proper interpretation of composite effects we conduct

joint variable selection of fixed and random effects in a hierarchical manner, which ensures

that non-zero random effects in the model are accompanied by their corresponding non-zero

fixed effects. Let Θ =
{
β(1), . . . ,β(5), σ1, σ2,η, vec(Σ)

}
:=
{
θ, vec(Σ)

}
denote the vector

of all parameters to be estimated. The marginal log-likelihood of the observed data under

the joint model is:

`(Θ) =
n∑
i=1

log

∫
p
(
αi,Ai, εi,Ei,D

∗
i | bi,θ

)
p
(
bi|Σ

)
dbi =

n∑
i=1

`i(Θ), where,

`i(Θ) = −1

2
log |Σ|+ log

∫
exp

( mi∑
j=1

log p(αij,Aij, εij,Eij,D
∗
i | bi,θ)− 1

2
bTi Σ−1bi

)
dbi

We estimate Θ using the EM algorithm for Joint models (Rizopoulos, 2012) where we treat

the random effects bi as ‘missing data’ and obtain Θ̂ by maximizing the expected value of

the complete data likelihood `cl(Θ, b) where

`cl(Θ, b) = −n
2

log Σ+
n∑
i=1

( mi∑
j=1

log p(αij,Aij, εij,Eij,D
∗
i | bi,θ)−1

2
bTi Σ−1bi

)
=

n∑
i=1

`cli (Θ, bi)

Denote the Q-function `Q(Θ) =
∑n

i=1 E `cli (Θ, bi) where the expectation is over the con-

ditional distribution of bi given the observations at the current parameter estimates. We

solve the following maximization problem involving a penalized Q-function for variable

selection:

max
θ,Σ�0

`Q(Θ)− nλ
5∑
s=1

p∑
r=1

(
csr| βsr|+ dsr Σ(s)

rr I{r ∈ Ic}
)

subject to f(s)(β(s)) ≤ 0, s = 1, · · · , 5 . (9)

Here, β(s) = {βsr : r ∈ I} and Σ is notationally generalized to include random effects

corresponding to all p fixed effects – time invariant or not by introducing harmless zero
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rows and columns corresponding to time-invariant effects. This is done for presentational

ease only to keep the indices same for the fixed and random effects and such degenerate

large Σ matrix never crops in the computations. Also, Σ
(s)
rr is the rth element of the

vector
(
Σ1+pc(s−1),1+pc(s−1), . . . ,Σpcs,pcs

)
which represents the segmented covariance matrix

corresponding to the sth model, Ic is the index set of all composite effects and λ > 0 is

the common regularization parameter which is chosen using a BIC-type criterion (Bondell

et al., 2010, Lin et al., 2013, Hui et al., 2017a) given by BICλ = −2`Q(Θ̂) + log(n)dim(Θ̂)

where dim(Θ̂) is the number of non-zero components in Θ̂.

In many practical applications the composite effects impose the following hierarchy be-

tween fixed and random effects: a random component can have a non-zero coefficient only

if its corresponding fixed effect is non-zero (Hui et al., 2017a). To induce such hierarchical

selection of fixed and random effects, we solve equation (9) using a re-weighted `1 mini-

mization algorithm that alternates between estimating Θ and redefining the data-driven

weights (csr, dsr) ∈ R2
+ such that the weights used in any iteration are computed from the

solutions of the previous iteration and are designed to maintain the hierarchy in selecting

the fixed and random effects through their construction (see Candes et al. (2008), Zhao

and Kočvara (2015), Lu et al. (2015) for details on these kind of approaches). Suppose Θ(t)

denote the solution to the maximization problem in equation (9) at iteration t. Then we

set c
(t)
sr = min

(
|β(t)
sr |−ν , ε−11

)
and d

(t)
sr = min

(
|Σ(s,t)

rr |−ν |β(t)
sr |−ν , ε−12

)
for iteration (t+ 1) with

ν = 2. We take ε1 = 10−2 to provide numerical stability and to allow a non-zero estimate

in the next iteration given a zero valued estimate in the current iteration (Candes et al.,

2008) and fix ε2 = 10−4 to enforce a large penalty on the corresponding diagonal element

of Σ in iteration (t+ 1) whenever |β(t)
sr | = 0. Note that whenever r ∈ Ic, the penalty dsr on

the diagonal elements of Σ encourages hierarchical selection of random effects. In section

C.2 of the supplementary material we conduct simulation experiments to demonstrate this

property of our re-weighted `1 procedure for solving equation (9). We end this section

with the observation that although the maximization problem based on criterion (9) does

not conduct any selection on the association parameters η, it achieves that goal implicitly

through the selection of the random effects.
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5 Estimation procedure

In this section, we discuss two key aspects of the estimation process.

Solving the maximization problem - We use an iterative algorithm to solve the

maximization problem in equation (9) which is analogous to the monte carlo EM (MCEM)

algorithm of Wei and Tanner (1990). Let Θ(t) denote the parameter estimates at iteration t.

In iteration t+1, the MCEM algorithm performs the following two steps until convergence:

E-step Recall Yi = [Y
(s)
i , s = 1, . . . , 5]. Evaluate `Q(t)(Θ) =

∑n
i=1 Ebi|Θ(t),Yi

`cli (Θ, bi) where

the expectation above is taken with respect to the conditional distribution of bi given

the observations Yi at the current estimates Θ(t). Thus,

Ebi|Θ(t),Yi
`cli (Θ,bi) =

∫
`cli (Θ, bi) p(bi | αi,Ai, εi,Ei,D∗i ,Θ(t)) dbi

= exp {−`i(Θ(t))}
∫
`cli (Θ, bi) p(αi,Ai, εi,Ei,D

∗
i | θ(t), bi, )φpc(bi|0,Σ(t)) dbi

where, φpc( · |0,Σ(t)) is the pc dimensional normal density with mean 0 and variance

Σ(t). Note that the expectation involves a multivariate integration with respect to the

random effects bi which is evaluated by Monte Carlo integration. We approximate it

as:( D∑
d=1

`cli (Θ, bdi ) p(αi,Ai, εi,Ei,D
∗
i | θ(t), bdi )

)/( D∑
d=1

p(αi,Ai, εi,Ei,D
∗
i | θ(t), bdi )

)
where bdi is a random sample from φpc( · |0,Σ(t)) and D = 2000 is the number of

monte carlo samples.

M-step Solve the following maximization problem with data driven adaptive weights (c
(t)
sr , d

(t)
sr )

Θ(t+1) = arg max
θ,Σ�0

`Q(t)(Θ)− nλ
5∑
s=1

p∑
r=1

(
c(t)sr | βsr|+ d(t)sr Σ(s)

rr I{r ∈ Ic}
)

subject to f(s)(β(s)) ≤ 0, s = 1, · · · , 5 .

The maximization problem above decouples into separate components that estimate

β(s) as solutions to convex problems and Σ as a solution to a non-convex problem.

To solve the convex problems involving β(s), we use a proximal gradient descent
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algorithm after reducing the original problem to an `1 penalized least squares fit with

convex constraints. See James et al. (2013) for related approaches of this kind. For

estimating Σ, we use the coordinate descent algorithm of Wang (2014) that solves a

lasso problem and updates Σ one column and row at a time while keeping the rest

fixed. Further details regarding our estimation procedure is presented in section A of

the supplementary material.

Split and Conquer - To enhance the computational efficiency of the estimation proce-

dure, we use the split-and-conquer approach of Chen and Xie (2014) to split the full set of

n players into K non-overlapping groups and conduct variable selection separately in each

group by solving K parallel maximization problems represented by equation (9). Following

Chen and Xie (2014), the selected fixed and random effects are then determined using a

majority voting scheme across all the K groups as described below.

Let β̂(s)[k] and Σ̂(s)[k] denote, respectively, the estimate of the fixed effect coefficients

for model s and the estimate of the pc diagonal elements of Σ for model s on split k obtained

by solving the maximization problem (9), where k = 1, . . . , K. We construct the set of

selected effects as:

Set of Fixed Effects: Î(s) =
{
r :

K∑
k=1

I(β̂sr[k] 6= 0) ≥ w0, r = 1, . . . , p
}

Set of Random Effects: Î(s)R =
{
r :

K∑
k=1

I(Σ̂(k)
r+pc(s−1),r+pc(s−1) > 0) ≥ w1, r = 1, . . . , pc

}
Here w0, w1 are pre-specified thresholds determining the severity of the majority voting

scheme. For large datasets as in mobile apps application, a distributed computing frame-

work utilizing the above scheme leads to substantial reduction in computation time. Section

C of the supplementary material presents a discussion of the split-and-conquer approach

along with numerical experiments that demonstrate the applicability of this method in our

setting where data driven adaptive weights are used in the penalty and variable selection is

conducted simultaneously across multiple models. Finally, based on the selected fixed and

random effect components in Î(s) and Î(s)R , we use the entire data and estimate their effects

more accurately by maximizing the likelihood based on only those components using the

standard EM algorithm.
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6 Analysis of freemium mobile games using CEZIJ

We apply our proposed CEZIJ methodology to the freemium mobile game data discussed in

Section 2. This dataset holds player level gaming information for 38,860 players observed

over a period of 60 days. The analyses presented here uses a sample of 33,860 players

for estimation and the remaining 5, 000 players for out of sample validation. See section

D in the supplementary material for a detailed description of the data. For sub-models

s = 1, . . . , 4, we consider a set of 30 predictors, of which 24 can have composite effects. The

24 composite effects are listed in table 3 (Serial No 1-24) of the supplementary material.

The remaining 6 predictors are the 6 promotion strategies summarized in section D and

table 5 of the supplementary material. We treat these promotion strategies as potential

fixed effects with no corresponding random effect counterparts. For the dropout model,

which shares its random effects with the four sub-models, the entire list of 30 candidate

predictors is taken as potential fixed effects. Overall, the selection mechanism must select

random effects from a set of 100 potential random effects (24 for each of the four sub-models

and their 4 intercepts) and select fixed effects from a set of 155 potential fixed effects (30

for each of the five sub-models and their 5 intercepts).

To model the responses at time point j, we consider time j − 1 values of the predictors

that contain gaming characteristics of a player simply because at time j these characteris-

tics are known only upto the previous time point j − 1. These gaming characteristics are

marked with an (∗) in table 3 of the supplementary material. All the remaining predictors

like weekend indicator and the 6 indicator variables corresponding to the promotion strate-

gies are applied at time j. We initialize the CEZIJ algorithm by fitting a saturated model on

a subset of 200 players, which was also used to initialize the weights csr, dsr in criterion (9).

Finally, our algorithm is run on K = 20 splits where each split holds nk = 1693 randomly

selected players with the majority voting parameters w0, w1 fixed at 12 and the regular-

ization parameter λk is chosen as that value of λ ∈ {10−4, 10−3, 10−2, 10−1, 0.25, 0.5, 1, 5}

which minimizes BICλ. Table 6 in section E of the supplementary material presents the

voting results for each candidate predictor across the 20 splits.
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6.1 The fitted joint model and its interpretations

The final list of selected predictors and their estimated fixed effect coefficients for the sub-

models of Activity Indicator (AI), Activity time (daily total time played), Engagement

Indicator (EI), Engagement amount and Dropout is presented in Table 2. See Table 3

(section D of the supplementary material) for the description of the covariates. The selected

composite effects are those predictors that exhibit a (∗) over their coefficient estimates in

Table 2. All the selected fixed and random effects obey the hierarchical structure discussed

in section 4. We next discuss the fitted coefficients for each sub-model.

Activity Indicator - For modeling probability of AI, the CEZIJ methodology selects 18

fixed effects of which 14 are composite effects. As AI forms the base of our joint model, the

fixed effects of its estimated marginal distribution have the least nuanced interpretation

among the 5 sub-models. All other things remaining constant, there is an overall increase

in the odds for AI by 35% on the weekends and an 8% increase in odds for each level

advancement in the game. Similarly, the conditional odds is boosted by 20%, 14% and 9%

respectively if the gacha game was played or robot purchases or upgrades were made in

the previous days. Absence of log-in in the previous day adversely affects the odds with

an average decrement of 88% for each absent day. Promotions II and VI, which provide

sale on robots at different dosages are positively associated and increase odds of AI by

approximately 20% and 30% respectively.

Activity Time - In this case the selection mechanism selects 17 fixed effects of which

15 are composite effects. The signs on the coefficients of timesince and weekend align

with the constraints imposed on them and along with the game characteristics like number

of primary and auxiliary fights played, level progressions, and robot upgrades, continue

to provide a similar interpretation as with the AI model. This is the second layer of joint

model which is conditioned on positive login occurrence. A key difference between these two

models, however, lies in the inclusion of predictors avg session length, gacha sink and

pfight source. They indicate that, keeping other things fixed, players interacting with

the game through spending in-game currencies or winning the same through principal fights

on the previous day have the natural incentive to spend more in-game time on the following
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day. In line with the monotonicity constraints imposed on the promotion strategies for this

model, the coefficient for promotion VI is both positive and bigger than the coefficient for

promotion II thus indicating that the strategy to promote sale on all robots has a higher

impact on activity time than the strategy to offer the special particular ‘Boss’ robots at a

discount.

Engagement Indicator and Amount - Recall from section 3 that we use an EZI Log

Normal model for the engagement amount by first building a separate model for the prob-

ability of EI given activity. For the sub-models that model EI and the engagement amount,

the CEZIJ methodology selects respectively, 22 fixed effects of which 16 are composite

effects and 6 fixed effects of which 2 are composite effects. Direct interpretation of the

fixed effect coefficients is difficult here, as this sub-model is conditioned on the first two

sub-models. We see that some of the key player engagement characteristics like number

of auxiliary fights played, level progression, in-app virtual currency spent and earned seem

to positively impact the conditional likelihood of positive engagement at subsequent time

points. A significant finding is that among the three different fight modes, only auxiliary

fight second mode which involve time restricted fights seems to lead to substantially higher

player engagement implying that all other variables remaining constant, player engagement

in game promotion through social media is more while playing time attack fights.

Dropout - In this case, the selection mechanism selects 9 fixed effects. The sign on the

coefficient for timesince is positive, which is natural, and indicates that players who do

not frequent the game often (low frequency of AI) exhibit a high likelihood of dropping out

at subsequent time points. It is also interesting to see, through gacha sink, that all else

being equal, players who spend more of their virtual currencies on gacha exhibit a high

likelihood of dropping out at subsequent time points. This can potentially be explained

through a "make-gacha-work-for-all-players"(Agelle, 2016) phenomenon where the

player spends a major portion of her virtual currency on gacha however the value of the

items won is largely worthless when compared to the amount of currency spent, thus

inducing a lack of interest in the game at future time points. All the promotions with

exception of promotion V, reduces the odds of dropouts validating their usage as retention

26



Table 2: Selected fixed effect coefficients and their estimates under the sub-models Act. Indicator, Activity

Time, Engag. Indicator and Engagement Amount and Dropout. The selected random effects are those

variables that exhibit a (∗) over their estimates. See Table 3 for a detailed description of the covariates.

Predictors Act. Indicator Activity Time Engag. Indicator Engag. Amount Churn

β̂(1) β̂(2) β̂(3) β̂(4) β̂(5)

intercept -4.648∗ 0.932∗ -1.560∗ 0.953∗ -1.902

avg session length – 0.269∗ 0.198∗ – –

p fights 0.378∗ 0.169∗ -0.126∗ – –

a1 fights 0.303∗ 0.379∗ 0.274∗ – –

a2 fights 0.334∗ 0.216∗ -0.492∗ – –

level 0.084∗ 0.304∗ 0.282∗ – –

robot played – – – – –

gacha sink – 0.201∗ 0.509∗ – 0.129

gacha premium sink – – – – –

pfight source – 0.144∗ – – –

a1fight source 0.030 -0.239∗ -0.727∗ – –

a2fight source -0.240∗ -0.192∗ 0.482∗ 0.331∗ –

gacha source 0.182∗ -0.212∗ – – –

gacha premium source – – 0.133∗ – –

robot purchase count 0.134∗ – – – –

upgrade count 0.093∗ 0.112∗ 0.404∗ – –

lucky draw wg – – -0.240∗ – –

timesince -2.065∗ -0.641∗ -0.229∗ – 3.502

lucky draw og -0.230∗ – -0.469∗ – –

fancy sink – – -0.110∗ – –

upgrade sink 0.037∗ – -0.272∗ – –

robot buy sink – – 0.159 – –

gain gachaprem – – – – –

gain gachagrind -0.127∗ 0.180∗ – – –

weekend 0.302∗ 0.358∗ – – –

promotion I – – – -1.153 -0.894

promotion II 0.178 0.134 -0.189 – -0.934

promotion III -0.129 – -0.166 -1.791 -3.500

promotion IV – – 0.164 -3.345 -0.673

promotion V – – -5.000 – 0.828

promotion VI 0.290 0.249 0.131 -2.389 -1.509
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schemes.

Figure 4: Heatmap of the 47 × 47 correlation matrix obtained from Σ̂. On the horizontal axis are the

selected composite effects of the four sub-models: AI, Activity Time, EI and Engagement Amount. The

horizontal axis begins with the intercept from the AI model and ends with a2fight source from the

Engagement Amount model.

From the heatmap in figure 4, the random effects of the selected composite effect pre-

dictors demonstrate correlations within the four sub-models that were modeled jointly,

indicating that players exhibit idiosyncratic profiles over time. Moreover, we notice sev-

eral instances of cross correlations across the four sub-models. For example from figure

5, the random effect associated with the number of championship fights played (predictor

p fights) in the AI model has a positive correlation with the amount of virtual currency

earned through auxiliary fights (predictor a2 fights source) played in the model for Ac-

tivity Time which suggests that the modeled responses are correlated for a player. Our
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Figure 5: Two networks that demonstrate several cross correlations across the models. Blue line rep-

resents positive correlation and red line represents negative correlation. The model numbers are inside

the parenthesis next to the predictor names. Left: Key cross correlations between the sub-models AI and

Activity Time. Right: Key cross correlations between the sub-models Activity Time and EI.

joint model allows us to borrow information across these related responses and may aid

game managers and marketers in understanding how the outcomes depend on each other.

6.2 Out of sample validation

We use the hold-out sample of 5, 000 players from the original data for assessing the pre-

dictive accuracy of our model. Our scheme consists of predicting the four outcomes - AI,

activity time, EI and engagement amount, dynamically over the next 29 days using the

fitted model discussed in section 6.1. Note that the time frame of prediction covers the

first 30 days of game usage for each player, and so by definition, no player drops out which

leaves us with the aforementioned four outcomes to predict. As benchmarks to our fit-

ted model, we consider four competing models - Benchmark I to Benchmark IV which we

describe below.

For Benchmark I we consider a setup where there are no random effects, the outcomes

are not modeled jointly and variable selection is conducted using the R-package glmmLasso

(Schelldorfer et al., 2014) that uses an `1-penalized algorithm for fitting high-dimensional
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Table 3: Results of predictive performance of CEZIJ model and Benchmarks I to IV. For activity and

engagement indicators, the false positive (FP) rate / the false negative (FN) rate averaged over the 29 time

points are reported. For non-zero activity time and engagement amounts, the ratio of prediction errors

(10) of Benchmarks I to IV to CEZIJ model averaged over the 29 time points are reported.

Sub-model Benchmark I Benchmark II Benchmark III Benchmark IV CEZIJ

Activity Indicator 1.32% / 6.71% 0.27% / 7.83% 1.19% / 6.33% 5.92% / 4.15% 5.86% / 4.12%

Total Time Played 1.742 1.961 4.662 1.041 1

Engagement Indicator 0.09% / 1.87% 0% / 1.89% 0.05% / 1.89% 3.56% / 1.48% 3.54% / 1.47%

Engagement Amount 1.408 8.619 1.217 1.067 1

generalized linear mixed models (GLMMs) with logit links for AI, EI and identity link for

the two continuous outcomes of positive activity time and engagement amount. In case of

Benchmark II, we continue to model the outcomes separately and use the R-package rpql

(Hui et al., 2017b) that performs joint selection of fixed and random effects in GLMMs

using a regularized PQL (Breslow and Clayton, 1993) with similar link functions as used in

Benchmark I. The remaining two Benchmark models rely on the selected variables from the

CEZIJ model itself and do not conduct their respective variable selection. In particular,

Benchmark III uses the selected predictors from the CEZIJ methodology and models the

outcomes via generalized linear models with logit links for AI, EI and identity link for

the two continuous outcomes of positive activity time and engagement amount. Thus

Benchmark III, like Benchmark I, represents a setup where there are no random effects and

the outcomes are not modeled jointly. Benchmark IV, on the other hand, represents a more

sophisticated setup wherein it resembles the fitted CEZIJ model in every aspect except that

the random effects across the four sub-models are not correlated. It achieves this by using

the selected fixed and composite effects from CEZIJ model but employs a slightly modified

covariance matrix Σ̆ where the covariances between random effects originating from the

different sub-models are set to 0, thus representing a setup where the outcomes are not

modeled jointly.

The out of sample validation requires predicting the responses dynamically over time.

For Benchmarks I and III this step is easily carried out by running the fitted model on
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the validation data. However, for Benchmark II, IV and CEZIJ model the prediction

mechanism must, respectively, estimate the latent random effects and appropriately account

for the endogenous nature of the responses. To do that we utilize the simulation scheme

discussed in section 7.2 of Rizopoulos (2012) and section 3 of Rizopoulos (2011), and

calculate the expected time j responses given the observed responses until time j − 1,

the estimated parameters and the event that the player has not churned until time j − 1

(details provided in section B of the supplementary material). Table 3 summarizes the

results of predictive performance of CEZIJ and the benchmark models. For AI and EI,

table 3 presents, for each model, the false positive (FP) rate and the false negative (FN)

rate respectively averaged over the 29 time points. The FP rate measures the percentage

of cases where the model incorrectly predicted activity (or engagement) whereas the FN

rate measures the percentage of cases where the model incorrectly predicted no activity

(or no engagement). Benchmark II, for example, exhibits the lowest FP rate and has the

highest FN rate followed by Benchmark III. The low FP rate of Benchmark II, however,

belies the relatively poor performance of this model in predicting zero inflated responses

which becomes apparent in the higher FN rates especially for the EI model. The CEZIJ

model alongwith Benchmark IV, on the other hand, have the lowest FN rates demonstrating

their relatively superior ability in predicting the zero inflated responses of AI and EI. For

positive activity times and positive engagement values we take a slightly different approach

and first calculate the time j prediction errors PEj for the Benchmark models and CEZIJ

as follows. For any modelM∈ {Benchmark I, ..., Benchmark IV, CEZIJ}, we define PEMj

for sub-model s = 2 at time j = 1, . . . , 29 as

PEMj (Y∗(s), Ŷ∗(s)) =
n∑
i=1

∣∣∣ logY
∗(s)
ij − log Ŷ

∗(s)
ij

∣∣∣ (10)

where Y
∗(s)
ij = Y

(s)
ij if αij = 1 and 1 otherwise, and Ŷ

∗(s)
ij = Ŷ

(s)
ij if α̂ij = 1 and 1 otherwise

with Ŷ
(s)
ij , α̂ij being model M predictions of activity time, AI, respectively, for player i at

time j. The time j prediction error for sub-model s = 4 is also defined in a similar fashion

with αij, α̂ij replaced with εij, ε̂ij respectively and measures the total absolute deviation

of the prediction from the truth at any time j. For notational convenience the dependence

of PEMj on αij, α̂ij (or εij, ε̂ij) have been suppressed but the inclusion of these predicted
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and observed indicators in equation (10) is aimed at exploiting the dependencies between

the responses, if any. For the two sub-models (s = 2, 4) table 3 presents the ratio of the

prediction errors of the Benchmarks to the CEZIJ model averaged over the 29 time points

where a ratio in excess of 1 indicates a larger absolute deviation of the prediction from

the truth when compared to CEZIJ model. All Benchmark models exhibit prediction error

ratios bigger than 1 with Benchmarks II and III being the worse for engagement amount

and activity time models respectively. Benchmark IV, on the other hand, profits from

the structure of the various components of CEZIJ model but is unable to account for the

dependencies between the responses which is reflected in its prediction error ratios being

slightly bigger than 1 but alongwith the CEZIJ model, it continues to demonstrate superior

prediction error ratios across the two sub-models.

6.3 Player segmentation using predicted churn probabilities

Player sub-populations with similar churn characteristics over time provide valuable in-

sights into user profiles that are more likely to dropout and can be used to design future

retention policies specifically targeting those characteristics. In this section we use the

fitted churn model of section 6.1 to predict the temporal trajectories of churn probabili-

ties on a sample of 1, 000 players who are 30 days into the game and use the predicted

probabilities over the next 25 days to cluster the players into homogeneous sub-groups.

The churn probabilities are predicted in a similar fashion as discussed in section 6.2 and

section B of the supplementary material where the churn probability at time j is predicted

conditional on the estimated parameters, the observed responses until time j − 1 and the

event that the player has not churned until time j− 1. To determine the player subgroups,

we use R package fda.usc to cluster the rows of the 1000× 25 predicted churn probability

matrix using functional K-means clustering. We use the prediction strength algorithm of

Tibshirani and Walther (2005) to determine the number of clusters.

In figure 6 the three cluster centroids segment the sample into groups which demonstrate

distinct temporal churn profiles. For instance, cluster 3, which holds almost 48% of the

players, exhibits rising churn probabilities until day 5 but tapers down under the influence
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Figure 6: Functional cluster analysis of predicted dropout probabilities over time. The plot presents three

cluster centroids. The shaded band around the centroids are the 25th and 75th percentiles of the churn

probabilities. The vertical shaded regions in the graph correspond to the days on which different promotion

strategies were on effect. The number of clusters were identified using prediction strength (Tibshirani and

Walther, 2005).

promotions I, II and VI. Cluster 2, with 34% of the players, has a different trajectory than

cluster 3 and appears to respond favorably to promotion VI. Of particular importance are

those players that belong to cluster 1 which holds 18% of the players and is characterized by

rising churn probabilities over time. The churn profile of this cluster represents players who

have been relatively inactive in the game and continue to do so even under the influence of

various promotion strategies. During days 17 to 19, their churn probabilities are predicted

to diminish under the effect of promotion VI however subsequent promotions do not appear

to have any favorable impact. These segment curves suggest that there are some key

differences in customer attrition patterns. For example, Cluster 1 shows increasing attrition

rates over time, which suggests that the game is not able to retain these players. Cluster 2

shows increasing attrition initially, but then the attrition rate starts to decline significantly
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after 45 days. This segment is potentially beneficial to the platform as it demonstrates

that there is a core set of players who are loyal to the game. Players in Cluster 3 on

average start with a much higher attrition rate than the other two segments, but their

attrition rate tapers down significantly after five days and then stays at a very low level

over time. Interestingly, Cluster 3 seems to be responding to promotions I, II and IV.

These differences in user behavior across the segments can be leveraged to increase the

efficiency of player retention policies. They also suggest that the platform should adopt

different business strategies. For instance, in Cluster 3 many players have been weeded out

early. This indicates that short term visitors to the gaming portal have left the platform

more quickly in Cluster 3 compared to the other two segments. So it is important for

the platform to emphasize promotional activities that increase player engagement. On the

contrary, for Clusters 1 and 2, it is important for the platform to emphasize promotional

activities that increase player log-in or activity. This relative emphasis across the segments

can increase the efficiency of marketing campaigns.

7 Discussion

We propose a very scalable joint modeling framework CEZIJ for unified inference and pre-

diction of player activity and engagement in freemium mobile games. The rapid growth

of mobile games globally has generated significant research interest in different business

areas such as marketing, management and information sciences. Our proposed algorithm

conducts variable selection by maintaining the hierarchical congruity of the fixed and ran-

dom effects and produces models with interpretable composite effects. A key feature of

our framework is that it allows incorporation of side information and domain expertise

through convexity constraints. We exhibit the superior performance of CEZIJ in produc-

ing dynamic predictions. It is also used to segment players based on their churn rates, with

the analysis revealing several idiosyncratic player behaviors that can be used for targeted

marketing of players in future freemium games. The segmentation findings have important

business implications for monetization of the platforms. They can be used to enhance the

effectiveness and efficiency of promotional activities and also future user acquisition and
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retention strategies.

Our inferential framework is based on modern optimization techniques and is very flex-

ible. It can be used in a wide range of big-data applications that need analyzing multiple

high-dimensional longitudinal outcomes along with a time-to-event analysis. In future, we

would like to extend our joint modeling program for providing comprehensive statistical

guidance regarding the growth, development and optimal pricing of generic digital prod-

ucts that use the freemium model. For that purpose, it will be interesting to investigate

extensions of our CEZIJ modeling framework, in particular, the possibility of incorporating

non-parametric components for modeling the nonlinear time effects since player behavior

may change over time. Furthermore, the current dropout model in equation (8) may be

enhanced to include more sophisticated structures involving cumulative effects parametriza-

tion and conduct variable selection on the high dimensional vector of association parameter

η, which the current CEZIJ framework implicitly achieves through the selection of the ran-

dom effects. An alternative and computationally less demanding approach may be to

consider the following low dimensional representation wherein the dropout model is of the

form logit(λij) = x
(5)T
ij β(5) +

∑4
s=1 ηsz

(s)T
ij b

(s)
i so that η is then only a 4× 1 vector. Finally,

while the focus of this paper is the CEZIJ modeling framework and its applicability in the

disciplined study of freemium behavior and other applications that needs analyzing multi-

ple high-dimensional longitudinal outcomes along with a time-to-event analysis, a natural

extension of our work, as future research, will be targeted towards estimating standard er-

rors of the estimated coefficients and confidence intervals under the CEZIJ framework using

ideas from recent developments in post-selection inference (see Javanmard and Montanari

(2014), Lee et al. (2016) for example).

Of the thousands of freemium games that are developed every month, very few of them

go on to make adequate amount through IAP (in-app purchases). Most games resemble our

data where a significant part of the revenue is earned through in-game ads and social media

usages. In these games, such low incidence of real money purchases present a challenge in

model development as the robustness of the estimated model coefficients will be significantly

impacted in case real money purchases are modeled as a separate response variable. Thus, in
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very low IAP incidence games it is useful to model the combined revenue using game specific

weights to blend direct and indirect engagement as is done in this paper. For games with

significant amount of IAP, we envision modeling direct and indirect engagement separately

and study their interactions.
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This supplementary material holds the following items: details around the maximization

problem in equation (9) (section A), the prediction equations used in section 6.3 of the

main paper (section B), discussion around the split-and-conquer approach (section C),

data description (section D) and variable selection voting results (section E).

A Technical details around the maximization problem

in equation (9)

In this section, we will first show that the maximization problem in equation (9) decouples

into separate components that estimate β(s) (and σ1, σ2 for the activity and engagement

models) and Σ as solutions to independent optimization problems (section A.1). There-

after, we show that the optimization problems involving β(s) are convex and can be solved

after reducing the original problem to an `1 penalized least squares fit with convex con-

straints (section A.2), while the coordinate descent algorithm of Wang (2014) provides a
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solution to the non-convex problem involving Σ (section A.3).

A.1 Simplifying equation (9)

Note that in the E-step of section 5, `Q(t)(Θ) is approximated by
∑n

i=1

∑D
d=1 `

cl
i (Θ, bdi )w

(t)
id

where

w
(t)
id = p(αij,Aij, εij,Eij,D

∗
i | bdi ,θ(t))/

D∑
d=1

p(αij,Aij, εij,Eij,D
∗
i | bdi ,θ(t))

is a known constant at iteration (t) and

`cli (Θ, bdi ) = −1

2
log Σ− 1

2
bdTi Σ−1bdi +

mi∑
j=1

log p(αij,Aij, εij,Eij,D
∗
i | bdi ,θ).

Moreover given the random effects bdi , log p(αij,Aij, εij,Eij,D
∗
i | bdi ,θ) factorizes into

log p(αij|bd(1)
i ,β(1)) + log p(Aij|αij, bd(2)

i ,β(2), σ1) + log p(εij|αij, bd(3)
i ,β(3))+

log p(Eij|εij, αij, bd(4)
i ,β(4), σ2) + log p(D∗i |bdi ,β(5),η)

wherein the sth term, for s = 1, · · · , 5, in the display above is solely a function of the

unknown parameter β(s) (and σ1, σ2,η for s = 2, 4, 5 respectively). This suffices to show

that the maximization problem in equation (9) decouples into six separate problems for

estimating β(1), (β(2), σ1),β(3), (β(4), σ2), (β(5),η) and Σ.

A.2 Estimating β(s)

In what follows, we will show that the optimization problems involving β(s) (and σ1, σ2

for the activity and engagement models) are convex and can be solved after reducing the

original problem to an `1 penalized least squares fit with convex constraints.

AI model - First note that
∑n

i=1

∑mi

j=1

∑D
d=1 log p(αij|bd(1)

i ,β(1))w
(t)
id can be written as

f1(β(1)) + f2(β(1)) + terms independent of β(1) where

f1(β(1)) = −
n∑
i=1

mi∑
j=1

D∑
d=1

log
[
1 + exp

(
x

(1)T
ij β(1) + z

(1)T
ij b

d(1)
i

)]
w

(t)
id
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is concave in β(1) and

f2(β(1)) =
n∑
i=1

mi∑
j=1

D∑
d=1

αijx
(1)T
ij β(1)w

(t)
id

is affine in β(1). Now from equation (9), the minimization problem for β(1) is

min
β(1)

f(β(1)) + h(β(1)) (1)

where f(β(1)) = −f1(β(1))− f2(β(1)) is convex and differentiable with respect to β(1), and

h(β(1)) = nλ
∑p

r=1 c1r|β1r| + IC(β(1)) is convex but non-differentiable, with IC(β(1)) as the

indicator function of the closed, convex set C = {β(1) : f(1)(β(1)) ≤ 0}. To solve equation

(1), we use the proximal gradient method that updates β(1) in iteration k = 1, 2, 3, . . . as

β
(1)
(k) = proxtk,h

(
β

(1)
(k−1) − tk∇f(β

(1)
(k−1))

)
(2)

where tk > 0 is the step size determined by backtracking line search and

proxtk,h(u) = arg min
β

(
h(β) +

1

2tk
||β − u||22

)
(3)

is the proximal mapping of h with u = β
(1)
(k−1) − tk∇f(β

(1)
(k−1)) and

∇f(β
(1)
(k−1)) =

n∑
i=1

mi∑
j=1

D∑
d=1

w
(t)
id

{[
1 + exp

(
− x(1)T

ij β
(1)
(k−1) − z

(1)T
ij b

d(1)
i

)]−1

− αij
}
x

(1)
ij

being the derivative of f(β(1)) with respect to β(1) evaluated at β
(1)
(k−1). The proximal

mapping in equation (3) for our specific application is, unfortunately, not available in an

analytical form. We resort to computing the proximal mappings numerically by re-writing

the minimization problem in equation (3) as an `1 penalized least squares fit with convex

constraints as follows:

min
β̃(1)

1

2t
||u−A(1)β̃(1)||22 + nλ||β̃(1)||1 (4)

subject to f̃(1)(β̃(1)) ≤ 0

where t = tk, β̃1r = c1rβ1r, A
(1) is a p×p diagonal matrix with A

(1)
r,r = 1/c1r and f̃(1) are the

transformed convexity constraints on β̃(1). For instance, if f(1)(β(1)) = C(1)β(1) for some
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matrix C(1) with p columns then f̃(1)(β̃(1)) = C(1)A(1)β̃(1). Finally, we solve (4) using CVX

(Grant et al., 2008).

Activity Time model - Define τ1 = σ−1
1 , β̄(2) = τ1β

(2) and re-write∑n
i=1

∑mi

j=1

∑D
d=1 log p(Aij|αij, bd(2)

i ,β(2), σ1)w
(t)
id as −f(τ1, β̄

(2)) + constant terms, where

f(τ1, β̄
(2)) =

n∑
i=1

mi∑
j=1

D∑
d=1

αijw
(t)
id

[1

2

(
τ1 logAij − x(2)T

ij β̄(2)
)2

− log τ1

]
is convex in (τ1, β̄

(2)). Thus from equation (9), the minimization problem for (τ1, β̄
(2)) is

min
τ1,β̄(2)

f(τ1, β̄
(2)) + h(τ1, β̄

(2)) (5)

where f(τ1, β̄
(2)) is convex and differentiable with respect to (τ1, β̄

(2)), and h(τ1, β̄
(2)) =

nλ
∑p

r=1 c2r|β̄2r|+ IC(τ1, β̄
(2)) is convex but non-differentiable, with IC(τ1, β̄

(2)) as the indi-

cator function of the closed, convex set C = {(τ1, β̄
(2)) : f(2)(β̄(2)) ≤ 0, τ1 ≥ υ}. Here υ is

a small positive number used to enforce τ1 > 0. To solve (5) we use the proximal gradient

method discussed in equations (2) and (3) wherein the proximal mapping of h is given by

proxtk,h(u) = arg min
τ1,β̄

(
h(τ1, β̄) +

1

2tk
||(τ1, β̄)T − u||22

)
where u = (τ

(k−1)
1 , β̄

(2)
(k−1))

T − tk∇f(τ
(k−1)
1 , β̄

(2)
(k−1)) and ∇f(τ

(k−1)
1 , β̄

(2)
(k−1))

=

∑n
i=1

∑mi

j=1

∑D
d=1 αijw

(t)
id

{
−1/τ

(k−1)
1 + logAij

(
τ

(k−1)
1 logAij − x(2)T

ij β̄
(2)
(k−1)

)}
−
∑n

i=1

∑mi

j=1

∑D
d=1 αijw

(t)
id

(
τ

(k−1)
1 logAij − x(2)T

ij β̄
(2)
(k−1)

)
x

(2)
ij


being the derivative of f(τ1, β̄

(2)) with respect to (τ1, β̄
(2)) evaluated at (τ

(k−1)
1 , β̄

(2)
(k−1)).

The above proximal mapping is computed in CVX by solving an `1 penalized least squares

fit with convex constraints as shown in equation (4).

EI model - Like the AI model,
∑n

i=1

∑mi

j=1

∑D
d=1 log p(εij|αij, bd(3)

i ,β(3))w
(t)
id can be written

as f1(β(3)) + f2(β(3)) + terms independent of β(3) where

f1(β(3)) = −
n∑
i=1

mi∑
j=1

D∑
d=1

αij log
[
1 + exp

(
x

(3)T
ij β(3) + z

(3)T
ij b

d(3)
i

)]
w

(t)
id
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is concave in β(3) and

f2(β(3)) =
n∑
i=1

mi∑
j=1

D∑
d=1

αijεijx
(3)T
ij β(3)w

(t)
id

is affine in β(3). So the minimization problem for β(3) in (9) is

min
β(3)

f(β(3)) + h(β(3)) (6)

where f(β(3)) = −f1(β(3))− f2(β(3)) is convex and differentiable with respect to β(3), and

h(β(3)) = nλ
∑p

r=1 c3r|β3r| + IC(β(3)) is convex but non-differentiable, with IC(β(3)) as the

indicator function of the closed, convex set C = {β(3) : f(3)(β(3)) ≤ 0}. To solve equation

(6), we use the proximal gradient method discussed in equations (2) and (3) wherein the

proximal mapping of h is given by

proxtk,h(u) = arg min
β

(
h(β) +

1

2tk
||β − u||22

)
where u = β

(3)
(k−1) − tk∇f(β

(3)
(k−1)) and

∇f(β
(3)
(k−1)) =

n∑
i=1

mi∑
j=1

D∑
d=1

αijw
(t)
id

{[
1 + exp

(
− x(3)T

ij β
(3)
(k−1) − z

(3)T
ij b

d(3)
i

)]−1

− εij
}
x

(3)
ij

being the derivative of f(β(3)) with respect to β(3) evaluated at β
(3)
(k−1). The above proximal

mapping is finally computed in CVX by solving an `1 penalized least squares fit with convex

constraints as shown in equation (4).

Engag. Amount model - Like the Activity time model, define τ2 = σ−1
2 , β̄(4) = τ2β

(4)

and re-write∑n
i=1

∑mi

j=1

∑D
d=1 log p(Eij|αij, εij, bd(4)

i ,β(4), σ2)w
(t)
id as −f(τ2, β̄

(4))+constant terms, where

f(τ2, β̄
(4)) =

n∑
i=1

mi∑
j=1

D∑
d=1

αijεijw
(t)
id

[1

2

(
τ2 logEij − x(4)T

ij β̄(4)
)2

− log τ2

]
is convex in (τ2, β̄

(4)). Thus from equation (9), the minimization problem for (τ2, β̄
(4)) is

min
τ2,β̄(4)

f(τ2, β̄
(4)) + h(τ2, β̄

(4)) (7)
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where f(τ2, β̄
(4)) is convex and differentiable with respect to (τ2, β̄

(4)), and h(τ2, β̄
(4)) =

nλ
∑p

r=1 c4r|β̄4r|+ IC(τ2, β̄
(4)) is convex but non-differentiable, with IC(τ2, β̄

(4)) as the indi-

cator function of the closed, convex set C = {(τ2, β̄
(4)) : f(4)(β̄(4)) ≤ 0, τ2 ≥ υ}. Here υ is

a small positive number used to enforce τ2 > 0. To solve (7) we use the proximal gradient

method discussed in equations (2) and (3) wherein the proximal mapping of h is given by

proxtk,h(u) = arg min
τ2,β̄

(
h(τ2, β̄) +

1

2tk
||(τ2, β̄)T − u||22

)
where u = (τ

(k−1)
2 , β̄

(4)
(k−1))

T − tk∇f(τ
(k−1)
2 , β̄

(4)
(k−1)) and ∇f(τ

(k−1)
2 , β̄

(4)
(k−1))

=

∑n
i=1

∑mi

j=1

∑D
d=1 αijεijw

(t)
id

{
−1/τ

(k−1)
2 + logEij

(
τ

(k−1)
2 logEij − x(4)T

ij β̄
(4)
(k−1)

)}
−
∑n

i=1

∑mi

j=1

∑D
d=1 αijεijw

(t)
id

(
τ

(k−1)
2 logEij − x(4)T

ij β̄
(4)
(k−1)

)
x

(4)
ij


being the derivative of f(τ2, β̄

(4)) with respect to (τ2, β̄
(4)) evaluated at (τ

(k−1)
2 , β̄

(4)
(k−1)).

Finally, CVX is used to compute the above proximal mapping by solving an `1 penalized

least squares fit with convex constraints as shown in equation (4).

Dropout model - For the dropout model, we re-write∑n
i=1

∑mi

j=1

∑D
d=1 log p(D∗i |bdi ,β(5),η)w

(t)
id as f1(β(5),η)+f2(β(5),η)+constant terms where

f1(β(5),η) = −
n∑
i=1

mi∑
j=1

D∑
d=1

log
[
1 + exp

(
x

(5)T
ij β(5) + ηTbdi

)]
w

(t)
id

is concave in (β(5),η) and

f2(β(5),η) =
n∑
i=1

mi∑
j=1

D∑
d=1

δDi

(
x

(5)T
ij β(5) + ηTbdi

)
w

(t)
id

is affine in (β(5),η). Now from equation (9), the minimization problem for (β(5),η) is

min
β(5),η

f(β(5),η) + h(β(5)) (8)

where f(β(5),η) = −f1(β(5),η) − f2(β(5),η) is convex and differentiable with respect to

(β(5),η), and h(β(5)) = nλ
∑p

r=1 c5r|β5r| + IC(β(5)) is convex but non-differentiable, with

IC(β(5)) as the indicator function of the closed, convex set C = {β(5) : f(5)(β(5)) ≤ 0}. To
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solve equation (8), we use the proximal gradient method discussed in equations (2) and (3)

wherein the proximal mapping of h is given by

proxtk,h(u) = arg min
β,η

(
h(β) +

1

2tk
||(β,η)T − u||22

)
where u = (β

(5)
(k−1),η(k−1))

T − tk∇f(β
(5)
(k−1),η(k−1)) and ∇f(β

(5)
(k−1),η(k−1))

=
n∑
i=1

mi∑
j=1

D∑
d=1

w
(t)
id

{[
1 + exp

(
− x(5)T

ij β
(5)
(k−1) − η(k−1)b

d
i

)]−1

− δDi
}x(5)

ij

bdi


being the derivative of f(β(5),η) with respect to (β(5),η) evaluated at (β

(5)
(k−1),η(k−1)). We

use CVX to compute the above proximal mapping by solving an `1 penalized least squares

fit with convex constraints as shown in equation (4).

A.3 Estimating Σ

From equation (9), the optimization problem for estimating Σ in iteration (t) can be

expressed as

min
Σ�0

log |Σ|+ trace(QΣ−1) + 2λ||P ∗Σ||1 (9)

where Q4pc×4pc = n−1
∑n

i=1

∑D
d=1 b

d
i b

dT
i w

(t)
id , P4pc×4pc = diag(d

(t)
s1 , . . . , d

(t)
s4pc). Here ∗ denotes

elementwise multiplication and for any matrix A, ||A||1 = ||vec(A)||1 =
∑pc

i,j |Aij|. The

above minimization problem in Σ is non-convex (Bien and Tibshirani, 2011) and we use

the coordinate descent based algorithm of Wang (2014) that updates Σ one row and one

column at a time while keeping the remaining elements fixed to obtain a solution. In

particular, given inputs (Q,P , λ) and iteration (k+ 1), the aforementioned algorithm first

partitions

Σ(k+1) =

Σ
(k)
11 σ12

σT12 σ22

 , Q =

Q11 q12

qT12 q22

 .

where Σ
(k)
11 and Q11 are the sub-matrices obtained from the first 4pc − 1 columns. Then

with β = σ12 and γ = σ22−σT12Σ
−1(k)
11 σ12, it uses coordinate descent algorithms (Friedman

et al., 2007) to obtain the estimates (β̂, γ̂) (see equations (5)-(7) in Wang (2014)) and

7



finally updates σ
(k+1)
12 = β̂ and σ

(k+1)
22 = γ̂ + β̂TΣ

−1(k)
11 β̂. This procedure is repeated for

every row and column (keeping others fixed) until convergence.

B Prediction equations

We first focus on the prediction problem discussed in section 6.3 of the main paper. For

player i, let Yi(t) = {αij,Aij, εij,Eij : 0 ≤ j ≤ t} denote the observed responses until time t

and ρi(u | t) be the conditional probability of drop-out at time u > t > 0 given no drop-out

until time t. Then,

ρi(u | t) = Pr(D∗i = u | D∗i > t,Yi(t); Θ)

=

∫
Pr(D∗i = u | D∗i > t,Yi(t), bi; Θ)p(bi | D∗i > t,Yi(t); Θ)dbi

=

∫
Pr(D∗i = u | D∗i > t, bi; Θ)p(bi | D∗i > t,Yi(t); Θ)dbi

Following section 3 of Rizopoulos (2011) and the fitted dropout model in equation (8), an

estimate of ρi(u | t) is

ρ̂i(u | t) = Pr(D∗i = u | D∗i > t, b̂i; Θ̂)

where b̂i = arg maxb log p(b | D∗i > t,Yi(t); Θ̂).

In section 6.2, we are interested in predicting the time u > t expected longitudinal

outcomes of AI, Activity, EI and Engagement given the observed responses Yi(t) for player

i who has not dropped-out at time t. We consider the case of predicting wi(u | t) :=

E{Aiu | D∗i > t,Yi(t); Θ} as an example as the rest follow along similar lines. Let α̂iu be

the predicted AI at time u conditional on Yi(t) and no dropout until time t. Then note

that

E{Aiu | D∗i > t,Yi(t); Θ} =

∫
E{Aiu | bi; Θ}p(bi | D∗i > t,Yi(t); Θ)dbi

and from section 7.2 of Rizopoulos (2012) an estimate of wi(u | t) is given by

ŵi(u | t) =

0, if α̂iu = 0

exp
(
x

(2)T
iu β̂(2) + z

(2)T
iu b̂

(2)
i +

σ̂2
1

2

)
, otherwise

where b̂i = (b̂
(s)
i : 1 ≤ s ≤ 4) = arg maxb log p(b | D∗i > t,Yi(t); Θ̂).
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C Split-and-Conquer Approach and Numerical Ex-

periments

In this section, we first discuss the split-and-conquer approach of Chen and Xie (2014) (sec-

tion C.1) and thereafter conduct numerical experiments to demonstrate the applicability

of this approach in our GLMM setup (section C.2).

C.1 Split-and-Conquer approach

To enhance the computational efficiency of the estimation procedure, CEZIJ uses the split-

and-conquer approach of Chen and Xie (2014) to split the full set of n players into K

non-overlapping groups and conducts variable selection separately in each group by solving

K parallel maximization problems represented by equation (9). In the process, our method-

ology uses data-driven adaptive weights (csr, dsr) ∈ R2
+ in the penalty with weights in any

iteration being computed from the solutions of the previous iteration. The selected fixed

and random effects are then determined using a majority voting scheme across all the K

groups as described in Section 5 of the main paper. In their original article however, Chen

and Xie (2014) use this approach in a GLM setup, and conduct selection and thereafter es-

timation of the selected coefficients, by first solving K penalized likelihood problems (with

fixed penalty λ that may vary with K) across the K splits of the data and then averaging

across the selected coefficients in each split. Theorem 1 in their paper demonstrates that

the estimator so obtained is sign consistent under some regularity conditions and as long as

log(Kp) = o(n/K) where p denotes the number of candidate predictors and n the sample

size. Moreover along with Theorem 1, Theorem 2 establishes that this averaged estimator

is asymptotically equivalent to the estimator obtained by solving the penalized likelihood

problem on the entire data.

While these theoretical results do not directly extend to a GLMM setting, in section

C.2 we empirically demonstrate the applicability of the above scheme in selecting fixed and

random effects in our setting where data-driven adaptive weights are used in the penalty

and variable selection is conducted simultaneously across multiple models. In terms of

9



computational efficiency, the split-and-conquer approach is efficient in the sense that if an

estimation procedure requires O(napb) computing steps for some a > 1, b ≥ 0, then the

split-and-conquer approach results in an efficiency gain of O(Ka−1) in computing steps (see

theorem 5 in Chen and Xie (2014)). Figure 1 presents a comparison of the computing time

for the two simulation settings considered in in section C.2 and demonstrates that in both

these settings CEZIJ, through its split-and-conquer approach for variable selection, offers

a potential gain in computational efficiency against the conventional and memory intensive

approach of running the selection algorithm on the undivided data.

C.2 Numerical Experiments

Here we present numerical experiments that assess the model selection performance of

CEZIJ under the longitudinal and Dropout models discussed in Section 3.1 of the main

paper. The MATLAB code for these simulation experiments is available at https://github.

com/trambakbanerjee/cezij#what-is-cezij. We consider two simulation settings as follows:

Simulation setting I - We consider a sample of n = 500 players and for each player i,

let Xi = (Xi.1, . . . ,Xi.p) denote the m × p matrix of candidate predictors where Xi.k =

(xi1k, . . . , ximk)
T . We fix m = 30, p = 10 and take If = {1, . . . , 8}, Ic = {9, 10} so that

pf = 8, pc = 2. Thus, the first 8 columns of Xi represent fixed effects while the last 2

represent composite effects.

The five responses [αi,Ai, εi,Ei,Di] corresponding to equations (2), (3), (6), (7) and (8)

of section 3.1 are generated from the following models: logit(πij) = β
(1)
0 + xij1β

(1)
1 + bi1,

µij = β
(2)
0 +xij2β

(2)
1 +bi2 with σ1 = 0.5, logit(qij) = β

(3)
0 +xij3β

(3)
1 +bi3, γij = β

(4)
0 +xij4β

(4)
1 +bi4

with σ2 = 0.5 and logit(λij) = β
(5)
0 + xij5β

(5)
1 + η1bi1 + . . . + η4bi4 where the true values

of the fixed effect coefficients are: β(1) = (1,−1.5), β(2) = (3.5,−2), β(3) = (1,−1),

β(4) = (3,−3), β(5) = (−1, 2) and, η = (η1, . . . , η4) = (−0.1, 0.2, 0.1,−0.2). Thus setting

I presents a relatively simple scenario wherein there are no composite effects in the true

model. The random effects bi = (bi1, . . . , bi4) are sampled from N4(0,Σ), independently

10

https://github.com/trambakbanerjee/cezij#what-is-cezij
https://github.com/trambakbanerjee/cezij#what-is-cezij


for each i, where

Σ =


1 0.2 0.4 0.5

0.2 3 0.9 0.7

0.4 0.9 0.8 0.5

0.5 0.7 0.5 4


Since the CEZIJ framework can incorporate convexity constraints on the fixed effect coef-

ficients, we impose the following sign constraints:

β
(1)
0 > 0, β

(1)
1 < 0; β

(3)
1 < 0; β

(4)
0 > 0, β

(4)
1 < 0.

Finally, to complete the specification, we sample (xij1, . . . , xij4) from N4(0, 4I4), indepen-

dently for each i = 1, . . . , n, j = 1, . . . ,m. To ensure that the generated sample contains

players that have not churned for at least the first 7 to 10 days, we let Xi.5 to be an m

dimensional ordered sample from Unif(−1, 1) so that Xi.5 = (xi15 ≤ · · · ≤ xim5) and,

generate the remaining predictors independently from Unif(−1, 1). In this respect, Xi.5

mimics the variable timesince (see section 6.1 and table 3) that gradually increases with

m and appears in the fitted Dropout model in table 2 of section 6.1.

Simulation setting II - In this setting, we consider a larger design and fix n = 2000,m =

30, p = 20 and, take If = {1, 3, 5 . . . , 8, 11, . . . , p}, Ic = {2, 4, 9, 10} so that pf = 16

and pc = 4. The five responses [αi,Ai, εi,Ei,Di] are generated from the following mod-

els: logit(πij) = β
(1)
0 + xij1β

(1)
1 + bi1, µij = β

(2)
0 + bi2 + xij2(β

(2)
1 + bi3) with σ1 = 0.5,

logit(qij) = β
(3)
0 + xij3β

(3)
1 + bi4, γij = β

(4)
0 + bi5 + xij4(β

(4)
1 + bi6) with σ2 = 0.5 and

logit(λij) = β
(5)
0 + xij5β

(5)
1 + η1bi1 + . . . + η6bi6 where the true values of the fixed effect

coefficients are identical to setting I and, η = (η1, . . . , η6)
i.i.d∼ Unif(−0.3, 0.3). The random

effects bi = (bi1, . . . , bi6) are sampled from N6(0,Σ), independently for each i, where

Σ =



1 0.2 −0.3 0.4 0.5 0.3

0.2 3 −0.2 0.9 0.7 0.1

−0.3 −0.2 1 0.2 0.3 0.2

0.4 0.9 0.2 0.8 0.5 0.4

0.5 0.7 0.3 0.5 4 0.3

0.3 0.1 0.2 0.4 0.3 1
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Table 1: Simulation setting I (n = 500,m = 30, p = 10, K = 5) - average False Nega-

tives(FN), average False Positives (FP) for fixed (composite or not) and random effects

and, % datasets with non-hierarchical selection.

Fixed Effects Random Effects

Model FN FP FN FP % Non Hier. Selec.

AI 0 2.76 0.16 0.36 0

Activity Time 0 1.44 0 0.04 0

EI 0 4.48 0 1.12 0

Engage. Time 0 1.52 0 0.04 0

Dropout 0 1.52 - - -

and the convexity constraints on the fixed effect coefficients continue to resemble that

of setting I. Finally, we continue to let Xi.5 be an m dimensional ordered sample from

Unif(−1, 1) and sample the remaining p − 1 predictors from a multivariate Gaussian dis-

tribution with mean 0 and covariance matrix Cov(xijr, xijs) = 0.5|r−s| independently for

each i = 1, . . . , n, j = 1, . . . ,m.

Recall that CEZIJ uses the split-and-conquer approach of Chen and Xie (2014) to split

the full set of n players into K non-overlapping groups and conducts variable selection sep-

arately in each group by solving K parallel maximization problems represented by equation

(9). The selected fixed and random effects are then determined using a majority voting

scheme across all the K groups as described in Section 5 of the main paper. For settings

I and II, we fix (K, ω1 ω2) at (5, 3, 3) and (10, 6, 6), respectively, so that n/K is 100 in

setting I and 200 in setting II. For each setting, we generate 50 datasets and assess the

model selection performance in terms of the average False Negatives (in-model predictors

falsely identified as being out of model) and average False Positives (out of model predic-

tors falsely identified as being in-model) for the fixed effects (composite or not) and the

random effects. To evaluate the hierarchical selection property of our framework, we also

report the percentage of datasets where our method conducted non-hierarchical selection

and chose predictors with random effects only.

12



Table 2: Simulation setting II (n = 2000,m = 30, p = 20, K = 10) - average False Neg-

atives(FN), average False Positives (FP) for fixed (composite or not) and random effects

and, % datasets with non-hierarchical selection.

Fixed Effects Random Effects

Model FN FP FN FP % Non Hier. Selec.

AI 0 4.13 0.07 1 0

Activity Time 0 0.47 0 0 0

EI 0 5.80 0 0.8 0

Engage. Time 0 1.07 0 0 0

Dropout 0 1.13 - - -

Tables 1 and 2 report the results of these simulation experiments. We see that across

both simulation settings, CEZIJ selects the correct in-model predictors for the five mod-

els. The relatively higher fixed effects False positives for the AI and EI models possibly

indicate some over-fitting due to the prevalence of large number of zeros in these models.

However, CEZIJ selects the fixed and random effects in a hierarchical fashion such that

no random effect predictor appears in any of the four models without their fixed effect

counterparts. This is not surprising given the way CEZIJ updates the adaptive weights

(c
(t)
sr , d

(t)
sr ) are after each iteration. Figure 1 presents a comparison of the computing time

for the two simulation settings considered here. In particular, it demonstrates that in both

these settings CEZIJ, through its split-and-conquer approach for variable selection, offers

a potential gain in computational efficiency against the conventional and memory intensive

approach of running the selection algorithm on the undivided data. The efficiency gain

reported in these figures, however, rely on the specific system configuration which in our

case was Windows 7, 64 bit, 32GB RAM on an Intel i7-5820K CPU with 12 cores.

13



1 2

4

5

6

7

8

9

C
om

pu
tin

g 
tim

e 
(m

in
s)

1 2

8

10

12

14

16

18

20

C
om

pu
tin

g 
tim

e 
(m

in
s)

Simulation setting I Simulation setting II

CEZIJ with
undivided data

CEZIJ with
split-and-conquer

CEZIJ with
undivided data

CEZIJ with
split-and-conquer

Figure 1: Computing time comparison for a fixed regularization parameter λ. Left: Sim-

ulation setting I with n = 500,m = 30, p = 10, K = 5. Right: Simulation setting II with

n = 2000,m = 30, p = 20, K = 10.

D Data Description

In this section we describe the data that holds player level gaming information for a free-

to-play Robot versus Robot Fighting game based on the movie Real Steel for Windows,

iOS and Android devices. The primary game-play revolves around fighting and upgrading

the robots while the secondary goals are to own as many robots as possible and collect

rewards. A key feature of the game is a Lucky Draw which is a card game where players

bet on their earnings to earn exciting in-app consumables, virtual currencies for robot

upgrades or even robots! There are 38,860 players with first activity date 24-Oct-2014 and

the analyses presented in section 6 uses the cohort of 33,860 players for estimation and the

remaining 5, 000 players for prediction. In table 3, we list the raw covariates along with

their description that were available in the data and table 4 presents a descriptive summary

of the raw covariates.

Promotion strategies - As discussed in Section 2, we also have side information about

the different retention and promotion strategies that were used across the 60 days. These

14



10
-2

10
0

10
2

10
4

10
6

10
8

Activity Time, Engagement Amount

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
il

it
y

Activity Time

Engage. Amnt.

Figure 2: Empirical CDF of Activity Time and Engagement Amount.

strategies were carefully designed by the game marketers to induce player activity, boost

engagement and in-app purchases at different points in time. Table 5 and figure 3 provide a

summary of the 6 different promotion strategies that were used during the 60 days that the

players were observed. In what follows, we provide a short description of the 6 promotion

strategies.

• Promotion strategy I - awards extra energy points or rewards during fights when the

player wins a combat.

• Promotion strategy II - constitutes the sale of ‘boss’ robots that possess special com-

bat moves not available in other robots and can only be acquired by defeating the

boss robot itself.

• Promotion strategy III - provides discounts on the purchase of powerful robots that

are usually available in higher levels of the game.

• Promotion strategy IV - offered discounts on in-app purchases during the Black-Friday

15



Table 3: List of covariates and the five responses. The gaming characteristics are marked with an (∗).

Sl No Covariates Description

1 avg session length∗ Average Session Length in Minutes

2 p fights∗ Total No. Of Principal Fights Played

3 a1 fights∗ Auxiliary 1 Fights Played

4 a2 fight∗ Auxiliary 2 Fights Played

5 level∗ Last Principal Level Fight Played

6 robot played∗ Total No. Of Robots Played with

7 gacha sink∗ Amount of In-Game Currency Spent for Gacha

8 gacha premium sink∗ Amount of Premium In-Game Currency Spent on Gacha

9 pfight source∗ Amount of In-Game Currency Earned by Playing Principal Fights

10 a1fight source∗ Amount of In-Game Currency Earned by Playing Auxiliary 1 Fights

11 a2fight source∗ Amount of In-Game Currency Earned by Playing Auxiliary 2 Fights

12 gacha source∗ Amount of In-Game Currency Earned by Playing Lucky Draw

13 gacha premium source∗ Amount of Premium In-Game Currency Earned by Playing the Lucky Draw

14 robot purchase count∗ No. Of Robot Purchased per Day

15 upgrade count∗ No. Of Robot Upgrades Done per Day

16 lucky draw ig∗ No. Of Lucky Draw played per Day Inside Game

17 timesince∗ Time Since Last Login in Days

18 lucky draw og∗ No. Of Lucky Draw played per Day Outside Game

19 fancy sink∗ Amount of In-Game Currency Spent on Buying Accessories

20 upgrade sink∗ Amount of In-Game Currency Spent for Robot Upgrade

21 robot buy sink∗ Amount of In-Game Currency Spent for Robot Purchase

22 gain gachaprem∗ % gain over gacha premium sink

23 gain gachagrind∗ % gain over gacha sink

24 weekend Weekend Indicator (0 - No, 1 - Yes)

Sl No Response Description

1 AI Whether active in a day (0 - No, 1 - Yes)

2 activity time Total Time Played in a day in Minutes

3 EI Whether positive engagement from the player in a day (0 - No, 1 - Yes)

4 engagement amount Total positive engagement amount from the player in a day in dollars

5 dropout Whether dropped out on that day (0 - No, 1 - Yes)
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and Thanksgiving holiday week.

• Promotion strategy V - designed to promote different robots and their combat skills

through emails and notifications

• Promotion strategy VI - provides discounts on the purchase of all robots.

Table 4: Summary statistics of the covariates reporting % of 0, mean, the 25th, 50th, 75th, 95th

percentiles and the standard deviation of all active players (αij = 1) across all m = 60 days. For

timesince, however, the statistics are reported for all players and not just active.

Covariates % of 0 Mean 25th 50th 75th 95th Std.

avg session length 0.01 32.55 7.32 2.66 13.63 30.97 5925.89

p fights 43.69 2.83 1.00 0.00 4.00 12.00 5.07

a1 fights 57.11 1.59 0.00 0.00 1.00 8.00 3.57

a2 fight 84.83 0.64 0.00 0.00 0.00 4.00 2.35

level 43.69 3.70 1.00 0.00 5.00 15.00 5.06

robot played 30.68 1.15 1.00 0.00 2.00 3.00 1.16

gacha sink 73.06 6.19 0.00 0.00 1.00 31.50 27.65

gacha premium sink 96.80 0.30 0.00 0.00 0.00 0.00 3.76

pfight source 43.69 27.18 0.98 0.00 10.24 116.82 108.44

a1fight source 57.12 3.07 0.00 0.00 1.56 15.82 10.98

a2fight source 84.83 1.47 0.00 0.00 0.00 5.12 12.27

gacha source 71.81 1.67 0.00 0.00 0.80 8.50 6.56

gacha premium source 88.93 0.85 0.00 0.00 0.00 5.00 3.81

robot purchase count 91.62 0.10 0.00 0.00 0.00 1.00 0.38

upgrade count 55.26 3.30 0.00 0.00 3.00 17.00 6.74

lucky draw wg 55.62 1.18 0.00 0.00 1.00 4.00 3.56

timesince 7.91 22.93 21.00 7.00 37.00 54.00 17.57

lucky draw og 77.97 1.92 0.00 0.00 0.00 10.00 8.56

fancy sink 87.57 0.69 0.00 0.00 0.00 1.60 10.51

upgrade sink 55.50 18.23 0.00 0.00 10.29 85.20 74.21

robot buy sink 91.64 8.68 0.00 0.00 0.00 35.00 56.10

gain gachaprem 98.36 0.04 0.00 0.00 0.00 0.00 0.45

gain gachagrind 77.98 0.13 0.00 0.00 0.00 0.47 1.30

weekend 63.33 0.37 0.00 0.00 1.00 1.00 0.48
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Table 5: Summary of the promotion strategies

Strategy Description No. of days %

- No strategy 20 33.33

I More energy or rewards 8 13.33

II Sale of boss robots 4 6.67

III Discounts on powerful robots 8 13.33

IV Holiday sale 7 11.67

V Promotion via emailing and messaging 5 8.33

VI Sale on all robots 8 13.33

In table 1 of the main paper, we provide the list of convex constraints imposed on the fixed

effects coefficients while solving the maximization problem in equation (9).

Figure 3: Distribution of the six promotion strategies over 60 days
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E Variable selection by split and conquer : Voting

results

Table 6 provides the voting results of the variable selection by split and conquer approach

of section 5.

Table 6: The number of times each candidate predictor is selected as fixed effect and random effect

across the K = 20 splits for the five sub-models. For each sub-model, the predictors with atleast 12

occurrences across 20 splits were selected.

AI Act. Time EI Engage. Amnt Dropout

Predictors Fixed Eff. Random Eff. Fixed Eff. Random Eff. Fixed Eff. Random Eff. Fixed Eff. Random Eff. Fixed Eff.

Intercept 20 20 20 20 14 14 20 20 17

avg session length 5 5 18 18 14 14 5 3 3

p fights 20 20 18 18 14 14 11 11 3

a1 fights 20 20 18 18 14 14 9 9 3

a2 fights 20 20 18 18 14 14 11 11 3

level 15 14 18 18 14 14 3 0 5

robot played 5 5 11 11 0 0 8 8 3

gacha sink 3 0 18 18 14 14 11 0 14

gacha premium sink 0 0 0 0 0 0 5 5 2

pfight source 3 0 18 18 0 0 9 8 3

a1fight source 12 11 18 18 14 14 8 8 5

a2fight source 17 17 18 18 14 14 12 12 11

gacha source 20 20 18 18 0 0 11 11 3

gacha premium source 11 11 0 0 14 14 5 5 2

robot purchase count 17 17 0 0 0 0 3 0 0

upgrade count 20 20 12 12 14 14 5 5 2

lucky draw wg 2 0 2 2 14 14 9 9 3

timesince 20 20 20 20 14 14 2 0 20

lucky draw og 18 18 0 0 14 14 6 6 3

fancy sink 2 2 0 0 14 14 5 5 0

upgrade sink 17 15 0 0 14 14 6 6 3

robot buy sink 5 5 0 0 14 6 3 2 2

gain gachaprem 3 3 0 0 0 0 2 2 0

gain gachagrind 18 18 18 18 0 0 11 5 3

weekend 20 12 18 18 0 0 2 0 0

promotion I 0 0 0 12 17

promotion II 20 18 14 3 17

promotion III 14 0 14 14 17

promotion IV 0 0 14 14 15

promotion V 0 0 14 0 14

promotion VI 20 18 14 14 17

# selected 18 14 17 15 22 16 6 2 9
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MATLAB implementation of the Constrained Zero
Inflated Joint Modeling (CEZIJ) framework of

Banerjee et al. (2019).

March 18, 2019

1 Introduction

CEZIJ (Banerjee et al., 2019) is a novel framework for parameter estimation in joint mod-

els with multiple longitudinal outcomes along with a time-to-event analysis. Longitudinal

data from modern datasets usually exhibit a large set of potential predictors and choosing

the relevant set of predictors is highly desirable for various purposes including improved

predictability. To achieve this goal, CEZIJ conducts simultaneous selection of fixed and

random effects in high-dimensional penalized generalized linear mixed models and main-

tains the hierarchical congruity of the fixed and random effects, thus producing models

with interpretable composite effects. It not only accommodates extreme zero-inflation in

the responses in a joint model setting but also incorporates domain-specific, convex struc-

tural constraints on the model parameters. For analyzing such large-scale datasets, variable

selection and estimation is conducted via a distributed computing based split-and-conquer

approach (Chen and Xie, 2014) that massively increases scalability.

2 Installation requirements

The GitHub repository holds the MATLAB toolbox cezij.mltbx that provides an im-

plementation of the CEZIJ procedure developed in Banerjee et al. (2019). To install this

1



toolbox, simply download cezij.mltbx in your computer and double click to install it. For

a successful installation, please make sure that the following system requirements are met.

• Access to 32GB RAM and at least 8 CPU cores for parallel computing

• MATLAB 2016b or higher with the following toolboxes (and their dependencies):

– Statistics toolbox

– Optimization toolbox

– Parallel Computing toolbox

– Data Acquisition toolbox

• CVX for MATLAB (version 2.1 or higher)

3 A numerical example

In this section, we will use a numerical example to illustrate the use of the cezij toolbox.

Our goal is to assess the model selection performance of CEZIJ under the longitudinal and

Dropout models discussed in Section 3.1 of Banerjee et al. (2019). To do that, we use the

simulation example of setting I discussed in section C.2 of the supplementary materials

and indicate which files in the toolbox should be edited to test a different dataset. Figure

1 presents three MATLAB scripts that should be edited to prepare the cezij toolbox for

analyses. In what follows, we discuss these scripts.

3.1 Generating simulated data - simulate data.m

To run the cezij variable selection algorithm on a dataset of your own choice, please edit

the m file simulate data.m and ensure that your data is in the same format as the output

of this m file. In the default setting, simulate data.m generates a simulated dataset that

we describe below.

Consider a sample of n = 500 players and for each player i, let Xi = (Xi.1, . . . ,Xi.p)

denote the m × p matrix of candidate predictors where Xi.k = (xi1k, . . . , ximk)T , m = 30

2
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Figure 1: There are three MATLAB scripts, numbered 1-3, that must be edited to prepare

the cezij toolbox for analyses. To reproduce table 4 in the supplementary file or table 1,

script 3 must be executed without making any changes to the default parameters in scripts

1-3.

denotes the number of time points for which we observe each player and p = 10 is number

of candidate predictors. We take If = {1, . . . , 8} as the indices of the fixed effects and,

Ic = {9, 10} as the indices of the composite effects so that pf = |If | = 8, pc = |Ic| = 2.

Thus, the first 8 columns of Xi represent fixed effects while the last 2 represent composite

effects. The five responses [αi,Ai, εi,Ei,Di] corresponding to AI, positive Activity, EI,

Positive Engagement and Dropout are generated from the following models: logit(πij) =

β
(1)
0 + xij1β

(1)
1 + bi1, µij = β

(2)
0 + xij2β

(2)
1 + bi2 with σ1 = 0.5, logit(qij) = β

(3)
0 + xij3β

(3)
1 + bi3,

γij = β
(4)
0 + xij4β

(4)
1 + bi4 with σ2 = 0.5 and logit(λij) = β

(5)
0 + xij5β

(5)
1 + η1bi1 + . . .+ η4bi4

where the true values of the fixed effect coefficients are: β(1) = (1,−1.5), β(2) = (3.5,−2),

β(3) = (1,−1), β(4) = (3,−3), β(5) = (−1, 2) and, η = (η1, . . . , η4) = (−0.1, 0.2, 0.1,−0.2).

Thus this setting presents a scenario wherein there are no composite effects in the true

model. The random effects bi = (bi1, . . . , bi4) are sampled from N4(0,Σ), independently

for each i, where

Σ =


1 0.2 0.4 0.5

0.2 3 0.9 0.7

0.4 0.9 0.8 0.5

0.5 0.7 0.5 4


Finally, to complete the specification, we sample (xij1, . . . , xij4) from N4(0, 4I4), indepen-

dently for each i = 1, . . . , n, j = 1, . . . ,m. To ensure that the generated sample contains

3



players that have not churned for at least the first 7 to 10 days, we let Xi.5 to be an m

dimensional ordered sample from Unif(−1, 1) so that Xi.5 = (xi15 ≤ · · · ≤ xim5) and, gen-

erate the remaining predictors independently from Unif(−1, 1). Although the MATLAB

file simulate data.m stores the above simulation setting, it can easily be modified to test

different settings.

3.2 Imposing convex constraints - get constraints sim.m

The CEZIJ framework can incorporate convexity constraints on the fixed effect coefficients

and this MATLAB file stores the following default constrains:

β
(1)
0 > 0, β

(1)
1 < 0; β

(3)
1 < 0; β

(4)
0 > 0, β

(4)
1 < 0.

Please modify this file to enforce constraints specific to your application or leave this

file unchanged to reproduce table 4 of the supplementary materials or table 1 in cezij

help.pdf.

3.3 Running the joint model - cezij simulation.m

Recall that CEZIJ uses the split-and-conquer approach of Chen and Xie (2014) to split the

full set of n players into K non-overlapping groups and conducts variable selection sepa-

rately in each group by solving K parallel maximization problems represented by equation

(9) of Banerjee et al. (2019). The selected fixed and random effects are then determined

using a majority voting scheme across all the K groups as described in Section 5 of the

above paper.

In the MATLAB file cezij simulation.m, lines 15-27 can be used to specify a number

of user defined parameters. For this example, we fix K = 5 so that n/K is 100 while q = 3

indicates the number of random effects including a random intercept. We generate nsets =

25 datasets and run cezij simulation.m to assess the model selection performance in

terms of the average False Negatives (in-model predictors falsely identified as being out

of model) and average False Positives (out of model predictors falsely identified as being

in-model) for the fixed effects (composite or not) and the random effects. To evaluate
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Table 1: (n = 500,m = 30, p = 10, K = 5) - average False Negatives(FN), average False

Positives (FP) for fixed (composite or not) and random effects and, % datasets with non-

hierarchical selection.

Fixed Effects Random Effects

Model FN FP FN FP % Non Hier. Selec.

AI 0 2.76 0.16 0.36 0

Activity Time 0 1.44 0 0.04 0

EI 0 4.48 0 1.12 0

Engage. Time 0 1.52 0 0.04 0

Dropout 0 1.52 - - -

the hierarchical selection property of our framework, the code also reports the percentage

of datasets where cezij conducted non-hierarchical selection and chose predictors with

random effects only.

Running cezij simulation.m with the default parameters generates Table 1 that re-

ports the results of the simulation exercise under setting I that is discussed in section C.2

of the supplementary materials. We see that CEZIJ selects the correct in-model predictors

for the five models. The relatively higher fixed effects False positives for the AI and EI

models possibly indicate some over-fitting due to the prevalence of large number of zeros

in these models. However, CEZIJ selects the fixed and random effects in a hierarchical

fashion such that no random effect predictor appears in any of the four models without

their fixed effect counterparts. This is not surprising given the way CEZIJ updates the

adaptive weights (c
(t)
sr , d

(t)
sr ) are after each iteration.

4 Simulation flow

In figure 2, we present a simulation flow diagram that depicts the main scripts that are

called when cezij simulation.m is executed. The scripts highlighted in blue are editable

and can be used to run the analyses on a different data set as described in section 3. The
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Figure 2: Simulation flow diagram that depicts the main scripts that are called when

cezij simulation.m is executed. The scripts highlighted in blue are editable while the

color coding of the scripts indicate their relative contribution to total computation time.

color coding of the scripts indicate their relative contribution to total computation time.

For instance, the iterative maximization step that is executed in parallel across the K

splits is the most computationally intensive step of the cezij algorithm and, as discussed

in section C.2 of the supplementary material, relies on the specific system configuration

and the number of computation cores available. In the default setting that is used to

reproduce table 1, this step takes approximately 5 minutes to execute (see figure 7 of the

supplementary materials). Depending on the number of splits K, availability of additional
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computational cores may further reduce the overall computation time.
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